基本信息
周林  男  硕导  中国科学院精密测量科学与技术创新研究院
电子邮件: lzhou@wipm.ac.cn
通信地址: 武汉市武昌区小洪山西30号频标楼226
邮政编码: 430071

研究领域

研究方向简介:

       等效原理是广义相对论两大假设之一,包括弱等效原理。弱等效原理又叫自由落体普适性原理,即众所周知决定“比萨斜塔实验”两个铁球同时落地的原理。在现代物理学中,标准模型将引力以外的另外三种基本相互作用力进行了统一,而试图将引力(广义相对论)和标准模型(量子力学)进一步统一起来的新物理理论往往都要求等效原理破缺。因此,对等效原理的实验检验,既是对广义相对论的检验,也是探寻新物理理论的重要途径。

       尽管在宏观尺度实验(包括扭秤、激光测月、卫星实验等)的测量精度达到十万亿分之一甚至更高,但等效原理依然成立。上世纪科学史留给人类最重要的经验之一,就是微观或高速运动下的物理规律与宏观低速下是不同的,因而,在量子力学规律统治的微观世界开展等效原理实验是物理学家梦寐以求的事情。而在激光冷却、光脉冲原子干涉等原子精密操控技术诞生以前,这类实验的高精度测量一直面临巨大的挑战。

       本实验室采用微观粒子(铷的两个同位素,铷-85和铷-87)开展弱等效原理的实验研究。两种原子在激光冷却等技术作用下,被冷却到绝对零度百万分之一度以下,并上抛形成原子喷泉;原子在自由下落的过程中与激光相互作用,形成物质波干涉仪,并将重力场信息记录在干涉条纹中,通过分析和计算,就可以获得原子“比萨斜塔实验”的实验结果。

       微观世界的比萨斜塔实验会不会与宏观不同?原子的量子性质(如自旋、纠缠、量子叠加、量子统计等)是否会影响等效原理的成立?量子精密测量的方法是否可能超过宏观实验的测量极限?这些是本领域前沿而重要的研究问题。

       实验室两大目标:精密测量认知等效原理普适性边界、探索人类操控原子物质波极限的方法和技术。

       上图不是大多数人所熟知的光学干涉条纹,而是我们实验室采集到的物质波(原子)干涉条纹在荧光中的成像。这是同步自由落体的85Rb(上)和87Rb(下)冷原子团,通过光脉冲原子干涉技术作用后,形成的对重力敏感物质波干涉条纹,背景重力场的精确信息就记录在条纹中。

       追溯人类的文明发展史,在思考“世界由什么构成”这一问题上,德谟克利特提出了“原子”的概念,斗转星移,原子已不再是当初脑海中构思的世界本原,而是成为了人类可以精密操控的粒子。而另一条在探讨“物体运动规律”的道路上,比萨斜塔实验中蕴含的科学思想,则先后在亚里士多德、伽利略、牛顿、爱因斯坦等古往今来最伟大思想家们的脑海中不断升华,成为今天广义相对论的基石。伴随人类探索大统一理论的脚步,这两个起点完全不同故事的情节在原子比萨斜塔实验中交汇。这也让我们非常期待,尚不兼容的量子力学和广义相对论,是否也会如这两个传奇故事一般,在人类认知的不断拓展的追求中,走向“殊途同归”?


      原子的“比萨斜塔实验”相关科普作品: 科普文章链接       科普视频链接


      


       

       实验研究平台:十米原子落塔

这是目前国际上最高的原子干涉仪实验装置,也是目前实现的、自由演化时间最长的原子干涉仪。

       

       光学系统一角


招生信息

招生专业:

070203-原子与分子物理


招生方向:

微观粒子弱等效原理检验
基于原子干涉仪的精密测量


教育背景:

2005-09--2011-01   中国科学院武汉物理与数学研究所   理学博士
2001-09--2005-07   中南大学   理学学士


工作经历:

2013-10~现在, 中国科学院武汉物理与数学研究所, 副研究员
2011-01~2013-09,中国科学院武汉物理与数学研究所, 助理研究员


社会兼职:

2018-2022   九三学社中央青年工作委员会,委员

2023-           九三学社中央科普工作委员会,委员

2022-           九三学社湖北省青年工作委员会,副主任



研究成果

发表论文:

[28]  Zhou, Lin ,Yan, SiTong ,Ji, YuHang ,He, Chuan ,Jiang, JunJie ,Hou, Zhuo ,Xu, RunDong ,Wang, Qi ,Li, ZhiXin ,Gao, DongFeng ,Liu, Min ,Ni, WeiTou ,Wang, Jin ,Zhan, MingSheng, Toward a high-precision mass–energy test of the equivalence principle with atom interferometers, FRONTIERS IN PHYSICS  , 2022 , 10 第一作者

[27]  Rundong Xu, Qi Wang, Sitong Yan, Zhuo Hou, Chuan He, Yuhang Ji, Zhixin Li, Junjie Jiang, Biyan Qiao, Lin Zhou,* Ji Wang, and Mingsheng Zhan,. Modular-assembled laser system for a long-baseline atom interferometer . APPLIED OPTICS[J] , 2022 , 61(16) : 4648-4654, 通讯作者

[26] Jiaqi Zhong, Biao Tang, Xi Chen, Lin Zhou . Quantum gravimetry going toward real applications . 创新(英文)[J] , 2022 , 3(3) : 100230- 

[25] 魏珊珊, 刘元煌, 陈群峰, 姚波, 张骥, 周林, 毛庆和. 面向 Rb原子精密测量的边带锁定780nm 高功率激光源 . 中国激光 , 2021

[24] He, Chuan, Yan, Sitong, Zhou, Lin, Barthwal, Sachin, Xu, Rundong, Zhou, Chao, Ji, Yuhang, Wang, Qi, Hou, Zhuo, Wang, Jin, Zhan, Mingsheng. All acousto-optic modulator laser system for a 12 m fountain-type dual-species atom interferometer. APPLIED OPTICS[J]. 2021, 60(17): 5258-5265, 通讯作者

[23] Zhou, Lin, He, Chuan, Yan, SiTong, Chen, Xi, Gao, DongFeng, Duan, WeiTao, Ji, YuHang, Xu, RunDong, Tang, Biao, Zhou, Chao, Barthwal, Sachin, Wang, Qi, Hou, Zhuo, Xiong, ZongYuan, Zhang, YuanZhong, Liu, Min, Ni, WeiTou, Wang, Jin, Zhan, MingSheng. Joint mass-and-energy test of the equivalence principle at the 10(-10) level using atoms with specified mass and internal energy. PHYSICAL REVIEW A[J]. 2021, 104(2): 并列第一作者(代表作)

[22] He, Meng, Chen, Xi, Fang, Jie, Ge, Guiguo, Li, Jinting, Zhang, Danfang, Zhou, Lin, Wang, Jin, Zhan, Mingsheng. Phase shift of double-diffraction Raman interference due to high-order diffraction states. PHYSICAL REVIEW A[J]. 2021, 103(6): 

[20] Ji, YuHang, Zhou, Lin, Yan, SiTong, He, Chuan, Zhou, Chao, Barthwal, Sachin, Yang, Feng, Duan, WeiTao, Zhang, WenDong, Xu, RunDong, Wang, Qi, Li, DongXu, Gao, JiaHong, Chen, Xi, Wang, Jin, Zhan, MingSheng. An actively compensated 8 nT-level magnetic shielding system for 10-m atom interferometer. REVIEW OF SCIENTIFIC INSTRUMENTS[J]. 2021, 92(8): 通讯作者

[19] Zhan, MingSheng, Wang, Jin, Ni, WeiTou, Gao, DongFeng, Wang, Gang, He, LingXiang, Li, RunBing, Zhou, Lin, Chen, Xi, Zhong, JiaQi, Tang, Biao, Yao, ZhanWei, Zhu, Lei, Xiong, ZongYuan, Lu, SiBin, Yu, GengHua, Cheng, QunFeng, Liu, Min, Liang, YuRong, Xu, Peng, He, XiaoDong, Ke, Min, Tan, Zheng, Luo, Jun. ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. INTERNATIONAL JOURNAL OF MODERN PHYSICS D[J]. 2020, 29(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000526039600006.

[18] Zhou, Chao, He, Chuan, Yan, SiTong, Ji, YuHang, Zhou, Lin, Wang, Jin, Zhan, MingSheng. Laser frequency shift up to 5 GHz with a high-efficiency 12-pass 350-MHz acousto-optic modulator. REVIEW OF SCIENTIFIC INSTRUMENTS[J]. 2020, 91(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000519254200001.通讯作者(代表作)

[17] Duan, WeiTao, He, Chuan, Yan, SiTong, Ji, YuHang, Zhou, Lin, Chen, Xi, Wang, Jin, Zhan, MingSheng. Suppression of Coriolis error in weak equivalence principle test using(85)Rb-Rb-87 dual-species atom interferometer*. CHINESE PHYSICS B[J]. 2020, 29(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000565283900001.通讯作者

[16] Huang, PanWei, Tang, Biao, Chen, Xi, Zhong, JiaQi, Xiong, ZongYuan, Zhou, Lin, Wang, Jin, Zhan, MingSheng. Accuracy and stability evaluation of the Rb-85 atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters. METROLOGIA[J]. 2019, 56(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000476897900002.

[15] Fang, Jie, Hu, Jiangong, Chen, Xi, Zhu, Haoran, Zhou, Lin, Zhong, Jiaqi, Wang, Jin, Zhan, Mingsheng. Realization of a compact one-seed laser system for atom interferometer-based gravimeters. OPTICS EXPRESS[J]. 2018, 26(2): 1586-1596,

 [14] Zhou, Chao, Barthwal, Sachin, Zhang, Wendong, He, Chuan, Tang, Biao, Zhou, Lin, Wang, Jin, Zhan, MingSheng. Characterization and optimization of a tapered amplifier by its spectra through a long multi-pass rubidium absorption cell. APPLIED OPTICS[J]. 2018, 57(26): 7427-7434, 通讯作者

[13] Hu, Jiangong, Chen, Xi, Fang, Jie, Zhou, Lin, Zhong, Jiaqi, Wang, Jin, Zhan, Mingsheng. Analysis and suppression of wave-front-aberration phase noise in weak-equivalence-principle tests using dual-species atom interferometers. PHYSICAL REVIEW A[J]. 2017, 96(2): 023618-1-023618-8, https://www.webofscience.com/wos/woscc/full-record/WOS:000407992200012.

[12] Sun, Dali, Zhou, Chao, Zhou, Lin, Wang, Jin, Zhan, Mingsheng. Modulation transfer spectroscopy in a lithium atomic vapor cell. OPTICS EXPRESS[J]. 2016, 24(10): http://ir.wipm.ac.cn/handle/112942/9366.

[11] Yang, Wei, Zhou, Lin, Long, Shitong, Peng, Wencui, Wang, Jin, Zhan, Mingsheng. Time-division-multiplexing laser seeded amplification in a tapered amplifier. CHINESE OPTICS LETTERS[J]. 2015, 13(1): http://ir.iphy.ac.cn/handle/311004/60395.

[10] Tang, Biao, Zhang, BaoCheng, Zhou, Lin, Wang, Jin, Zhan, MingSheng. Sensitivity function analysis of gravitational wave detection with single-laser and large-momentum-transfer atomic sensors. RESEARCH IN ASTRONOMY AND ASTROPHYSICS[J]. 2015, 15(3): 333-347, http://ir.iphy.ac.cn/handle/311004/61351.

[9] Tang, Biao, Zhang, Baocheng, Zhou, Lin, Wang, Jin, Zhan, Mingsheng. Influence of separating distance between atomic sensors for gravitational wave detection. EUROPEAN PHYSICAL JOURNAL D[J]. 2015, 69(10): http://ir.wipm.ac.cn/handle/112942/9077.

[8] Zhou, Lin, Long, Shitong, Tang, Biao, Chen, Xi, Gao, Fen, Peng, Wencui, Duan, Weitao, Zhong, Jiaqi, Xiong, Zongyuan, Wang, Jin, Zhang, Yuanzhong, Zhan, Mingsheng. Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. PHYSICAL REVIEW LETTERS[J]. 2015, 115(1): http://ir.wipm.ac.cn/handle/112942/4868.第一作者(代表作,ESI高被引论文)

[7] Peng, Wencui, Zhou, Lin, Long, Shitong, Wang, Jin, Zhan, Mingsheng. Locking laser frequency of up to 40 GHz offset to a reference with a 10 GHz electro-optic modulator. OPTICS LETTERS[J]. 2014, 39(10): 2998-3001, http://ir.wipm.ac.cn/handle/112942/1498.

[6] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报[J]. 2014, 63(15): 153701-, http://ir.wipm.ac.cn/handle/112942/20097, http://www.irgrid.ac.cn/handle/1471x/6858783, http://ir.wipm.ac.cn/handle/112942/20098.

[19] Tang, Biao, Zhou, Lin, Xiong, Zongyuan, Wang, Jin, Zhan, Mingsheng. A programmable broadband low frequency active vibration isolation system for atom interferometry. REVIEW OF SCIENTIFIC INSTRUMENTS[J]. 2014, 85(9): http://ir.wipm.ac.cn/handle/112942/1478.

[5] 郝恺, 周林, 汤彪, 彭文翠, 杨威, 王谨, 詹明生. 85rb和87rb双磁光阱的同时实现及特性研究. 量子电子学报[J]. 2013, 30(2): 169-, http://ir.wipm.ac.cn/handle/112942/17030, http://www.irgrid.ac.cn/handle/1471x/6857782, http://ir.wipm.ac.cn/handle/112942/17031.

[4] Zhou, L, Xiong, Z Y, Yang, W, Tang, B, Peng, W C, Hao, K, Li, R B, Liu, M, Wang, J, Zhan, M S. Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement. GENERAL RELATIVITY AND GRAVITATION[J]. 2011, 43(7): 1931-1942, http://www.irgrid.ac.cn/handle/1471x/960316.第一作者(代表作)

[3] Zhou Lin, Xiong ZongYuan, Yang Wei, Tang Biao, Peng WenCui, Wang YiBo, Xu Peng, Wang Jin, Zhan MingSheng. Measurement of Local Gravity via a Cold Atom Interferometer. CHINESE PHYSICS LETTERS[J]. 2011, 28(1): 78-81, http://lib.cqvip.com/Qikan/Article/Detail?id=36252117.第一作者(代表作)

[2] 周林, 王谨, 詹明生, 王文超, 汤彪. 原子干涉仪中的超低频隔振系统的设计及仿真. 量子电子学报[J]. 2010, 27(3): 367-372, http://lib.cqvip.com/Qikan/Article/Detail?id=34127160.

[1] Wang, Jin, Zhou, Lin, Li, Runbing, Liu, Min, Zhan, Mingsheng. Cold atom interferometers and their applications in precision measurements. FRONTIERS OF PHYSICS IN CHINAnull. 2009, 4(2): 179-189, http://www.irgrid.ac.cn/handle/1471x/960683.


专利:

( 12 ) 一种速度可调的大束流冷原子源, 实用新型, 2021, 第 4 作者, 专利号: CN 212659318 U
( 11 ) 一种即插式声光移频的装置, 实用新型, 2021, 第 5 作者, 专利号: CN 212658910 U
( 10 ) 一种即插式的锥形激光放大装置, 实用新型, 2021, 第 4 作者, 专利号: CN 212517878 U
( 9 ) 一种即插式稳频装置, 实用新型, 2021, 第 3 作者, 专利号: CN 212435020 U
( 8 ) 一种基于12程声光移频技术的多频激光光 源装置, 实用新型, 2020, 第 1 作者, 专利号: CN 212060794 U
( 7 ) 在单程和双程复合模式下的半导体锥 形激光放大系统, 发明专利, 2019, 第 3 作者, 专利号: CN201910276084. 4.
( 6 ) 基于多程声光移频技术的声光扫频系统, 发明专利, 2019, 第 2 作者, 专利号: CN201910275135.1.
( 5 ) 基于声光调制的8程移频器, 发明专利, 2018, 第 2 作者, 专利号: CN2018 10211969.1.
( 4 ) 用于冷原子干涉仪的集成 化光学系统, 发明专利, 2017, 第 4 作者, 专利号: CN201710780527.4.
( 3 ) 基于双级二维磁光阱的大束流冷原子源, 发明专利, 2017, 第 2 作者, 专利号: CN201710057133.6
( 2 ) 基于声光调制器的多频激光时分复用放大器, 发明专利, 2017, 第 1 作者, 专利号: ZL 2014 1 0549070.2
( 1 ) 基于原子共振吸收和差分探测的激光频谱纯度测 量装置, 发明专利, 2017, 第 2 作者, 专利号: CN201710028845.5.


发表著作:

(1) Annual Review of Cold Atoms and Molecules-Cold Atoms and Precision Measurements, World Scientifc, 2012-11, 第 4 作者


科研项目:

( 12 )时空精密测量原子干涉研究设施预研, 主持, 湖北省重大科技项目课题, 2022-06--2024-12
( 11 )基于长基线原子干涉仪的等效原理检验, 主持, 湖北省杰出青年基金, 2022-06--2025-6
( 10 )原子干涉仪检验等效原理, 主持, 中科院基础研究领域青年团队:精密光谱测量极限课题, 2022-06--2027-6
( 9 ) 高动态范围双组分原子干涉仪的实验研究, 主持, 国家级, 2022-01--2025-12
( 8 ) 冷原子干涉重力梯度张量高精度测量装置的研制, 参与, 国家级, 2021-11--2025-10
( 7 ) 用原子干涉仪检验等效原理, 参与, 部委级, 2016-07--2020-12
( 6 ) 利用原子干涉法高精度检验等效原理, 参与, 国家级, 2018-01--2020-12
( 5 ) 不同角动量态原子自由落体普适性的实验检验, 主持, 国家级, 2016-01--2019-12
( 4 ) 中国科学院青年创新促进会, 主持, 部委级人才项目, 2016-01--2019-12
( 3 ) 基于双组分冷原子干涉仪的等效原理检验, 参与, 国家级, 2016-01--2019-12
( 2 ) 相干同步双原子干涉仪与重力精密测量, 参与, 国家级, 2016-07--2021-06
( 1 ) 差分法精密测量铷原子冷碰撞频移, 主持, 国家级, 2013-01--2015-12


指导学生

已指导学生

段维涛  博士研究生  070203-原子与分子物理  

现指导学生

李执信  硕士研究生  070201-理论物理  

雷家琦  硕士研究生  070200-物理学