General
Alberto Macho  Male, PSC/SIPPE , SIBS, CAS
Emai: alberto.macho@sibs.ac.cn
Address: 3888 Chenhua Rosa, Songjiang district.
Zip code: 201602


Research Areas

The interaction between plant and bacterial pathogens

Education

    2005-2010 PhD in Biology (cum laude)

Department of Cell Biology, Genetics and Physiology, Genetics Area, University of Málaga, Spain. Supervisor: Dr Carmen R. Beuzón.

 

2004-2006 Master’s Degree in Biotechnology

University of Málaga, Spain.

 

1999-2004 Bachelor of Sciences (Biology)

University of Málaga, Spain.



Experience

   
Work Experience
08/2010-01/2011: Postdoctoral Researcher, University of Málaga, Spain.

02/2011-12/2014: Postdoctoral Research Associate, The Sainsbury Laboratory, Norwich, United Kingdom.

01/2015: Principal Investigator, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences.


Teaching Experience

2016 Lectures within the graduate program “Molecular Plant-Microbe Interactions” (2 hours). Nanjing Agricultural University, China.

 

2014 Lectures within the module “Molecular Plant-Microbe Interactions” (2 hours). School of Biological Sciences, University of East Anglia, Norwich, UK.

 

2008/2009   Genetic Engineering (lab) (30 hours). Biology Degree Program, University of Málaga, Spain.

 

2007/2008          Genetic Engineering (lab) (30 hours). Biology Degree Program, University of Málaga, Spain.

 

2006/2007 Plant Genetics (lab) (15 hours). Biology Degree Program, University of Málaga, Spain.

 

2005/2006 Genetics (lab) (15 hours). Biology Degree Program, University of Málaga, Spain.

 

Genetics (lab) (15 hours). Environmental Sciences Degree Program, University of Málaga, Spain.

 

2004/2005  Genetics (lab) (15 hours). Biology Degree Program, University of Málaga, Spain.

 

Genetics (lab) (15 hours). Environmental Sciences Degree Program, University of Málaga, Spain.



Publications

35. Wang Y., Rosas-Diaz T., Caceres-Moreno C., Lozano-Duran R., and Macho A.P. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 protein is a regulator of basal immunity in Arabidopsis thaliana. Under review

34. Wei Y., Caceres-Moreno C., Jimenez-Gongora T., Wang K., Sang Y., Lozano-Duran R. and Macho A.P. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnology Journal (2017), https://doi.org/10.1111/pbi.12874.

33. Wei Y. #,Sang Y. # and Macho A.P. The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity. Frontiers in Plant Science (2017) Nov 7; 8: 1899.

32. Jiang G., Wei Z., Xu J., Chen H., Zhang Y., She X., Macho A.P., Ding W. and Liao B. Bacterial Wilt in China: history, current status and future perspectives. Frontiers in Plant Science (2017) Sep 11; 8: 1549.

31. Sun Y.#, Wang K.#, Caceres-Moreno C.#, Jia W., Chen A., Zhang H., Liu R.* and Macho A.P.* Genome sequencing and analysis of Ralstonia solanacearum phylotype I strains FJAT-91, FJAT-452 and FJAT-462 isolated from tomato, eggplant, and chilli pepper in China. Standards in Genomic Sciences (2017) 12:29.

30. Puigvert M., Guarischi-Sosa R., Zuluaga P., Coll N.S., Macho A.P., Setubal J.C. and Valls M. Transcriptomes of Ralstonia solanacearum during root colonization of Solanum commersonii. Frontiers in Plant Science (2017) 8: 370.

29. Rufián J.S., Macho A.P., Corry D.S., Mansfield J.W., Ruiz-Albert J., Arnold D. and and Beuzón C.R. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. Molecular Plant Pathology (2017), online ahead of print.

28. Sang Y.Y. & Macho A.P. Analysis of PAMP-triggered ROS Burst in Plant Immunity. Methods in Molecular Biology (2017) 1578:143-153.

27. Sang Y., Wang Y., Ni H., Cazalé-Noel A.C., She Y., Peeters N. and Macho A.P. The Ralstonia solanacearum type-III effector RipAY targets plant redox regulators to suppress immune responses. Molecular Plant Pathology (2016). Final publication 2018 Jan; 19 (1): 129-142.

26. Rufián J.S., Sánchez-Romero M.A., López-Márquez D., Macho A.P., Mansfield J.W., Arnold D.L., Ruiz-Albert J., Casadesús J. and Beuzón C.R. Pseudomonas syringae differentiates into phenotypically distinct subpopulations during colonization of a plant host. Environmental Microbiology (2016) 18:3593-3605.

25. Couto D., Niebergall R., Liang X., Bücherl C.A., Sklenar J., Macho A.P., Ntoukakis V., Derbyshire P., Altenbach D., Maclean D., Robatzek S., Uhrig J., Menke F., Zhou J.M. and Zipfel C. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens (2016) 12 (8).

24. Castro P.H., Couto D., Freitas S., Verde N., Macho A.P., Huguet S., Botella M.A., Ruiz-Albert J., Tavares R.M., Bejarano E.R. and Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology (2016) 92:143-59.

23. Rosas-Díaz T., Macho A.P., Beuzón C.R., Lozano-Durán R. and Bejarano E.R. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. Plants (2016) 5 (1), 8.

22. Macho A.P., Rufián J.S., Ruiz-Albert J. and Beuzón C.R. Competitive Index: Mixed Infection-Based Virulence Assays for Genetic Analysis in Pseudomonas syringae-Plant Interactions. Methods in Molecular Biology (2016) 1363:209-17.

21. Kadota Y., Macho A.P. and Zipfel C. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods in Molecular Biology (2016) 1363:133-44.

20. Macho A.P. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytologist (2016) 210: 51–57. doi:10.1111/nph.13605

19. Rufián J.S., Lucía A., Macho A.P., Orozco-Navarrete B., Arroyo-Mateos M.A., Bejarano E.R., Beuzón C.R. and Ruiz-Albert J. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression. Frontiers in Microbiology (2015) 6: 684.

18. Macho A.P.*, Lozano-Durán R. and Zipfel C*. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends in Plant Science (2015) 20: 269-272. (* Co-corresponding authors)

17. Macho A.P. & Zipfel C. Targeting of PRR-triggered immunity by type-III effectors from plant pathogenic bacteria. Current Opinion in Microbiology (2015) 23: 14–22.

16. Segonzac C., Macho A.P., Sanmartín M., Ntoukakis V., Sánchez-Serrano J.J. and Zipfel C. Negative control of BAK1 by Protein Phosphatase 2A during plant innate immunity. EMBO Journal (2014) 33: 2069-79.

15. Macho A.P. and Zipfel C. Plant PRRs and the activation of innate immune signaling. Molecular Cell (2014) 54: 263-272.

14. Macho A.P.*, Schwessinger, B.*, Ntoukakis V.*, Brutus A., Segonzac C., Roy S., Kadota Y., Oh M-H., Sklenar J., Derbyshire P., Lozano-Durán R., Gro Malinovsky F., Monaghan J., Menke F.L., Huber S.C., He S.Y. and Zipfel C. (* Co-first authors) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science (2014) 343: 1509-1512.

ich I. and Zipfel C. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife (2013) 2:e00983.

12. Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., Zhou J.M. and Chai J.J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science (2013) 342: 624-628.

11. Macho A.P., Boutrot F., Rathjen J.P. and Zipfel C. Aspartate Oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiology (2012) 159 (4): 1845-56.

10. Macho A.P.*, Zumaquero A.*, González-Plaza J.J., Ortiz-Martín I., Rufián J.S. and Beuzón C.R. Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. (* Co-first authors) PLoS One (2012) 7 (4): e35871.

9. Macho A.P. and Beuzón, C.R. Insights into plant immunity signaling: The bacterial competitive index angle. Plant Signaling & Behavior (2010) 5, 1-4.

8. Zumaquero, A., Macho, A.P., Rufián, J.S. and Beuzón, C.R. Approaching the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in the interaction with the plant. Journal of Bacteriology (2010) 192 (17): 4474-4488. Featured in The Faculty of 1000.

7. Macho A.P., Guevara C.M., Tornero P., Ruiz-Albert J. and Beuzón C.R. The Pseudomonas syringae type III effector HopZ1a suppresses effector-triggered immunity. New Phytologist (2010) 187 (4): 1018-1033.

6. Macho A.P.*, Guidot A.*, Barberis P., Beuzón C.R. and Genin S. A competitive index assay identifies several Ralstonia solanacearum Type III effector mutant strains with reduced fitness in host plants. (* Co-first authors) Molecular Plant-Microbe Interactions (2010) 23 (9): 1197–1205.

5. Ortiz-Martín I., Thwaites R., Macho A.P., Mansfield J.W. and Beuzón C.R. Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Molecular Plant-Microbe Interactions (2010) 23 (5): 665-681.

4. Macho A.P., Ruiz-Albert J., Tornero P. and Beuzón C.R. Identification of new type III effectors and analysis of the plant response by competitive index. Molecular Plant Pathology (2009) 10 (1): 69-80.

3. Rodríguez-Moreno L., Pineda M., Soukupová J., Macho, A.P., Beuzón C.R., Barón M., Ramos C. Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescente imaging. Photosynthesis research (2008) 96 (1): 27-35.

2. Macho A.P., Zumaquero A., Ortiz-Martín I., and Beuzón C.R. Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Molecular Plant Pathology (2007) 8 (4): 437–450.

1. Ortiz-Martín I., Macho A.P., Lambertsen L., Ramos C. and Beuzón C.R. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Journal of Microbiological Methods (2006) 67 (3): 395-407.


Research Interests

Interactions between plants and bacterial pathogens
 
Plant diseases caused by bacterial pathogens pose an important threat to food security worldwide, and efficient strategies to combat them are urgently required. To achieve this, it will be necessary to understand the mechanisms of infection by pathogens and the counter-measures employed by resistant plants. Bacterial pathogens, from both animals and plants, need to manipulate host functions in order to promote disease. In most gram-negative bacteria, an essential virulence factor is the Type III secretion system (T3SS), which injects Type III effector proteins (T3Es) into host cells. T3Es collectively perturb cellular processes in host cells and modulate host immunity to enable bacterial infection. However, resistant plants have developed ways to detect specific T3Es and subsequently trigger immune responses that prevent disease. In plant pathogens, we are beginning to determine the molecular mechanisms underlying the subversion of host processes by T3Es, but several important questions remain poorly understood. This constitutes an important handicap for our knowledge of fundamental aspects of bacterial diseases in plants and the engineering of efficient plant resistance against them.
 
Ralstonia solanacearum is considered the most destructive plant pathogenic bacterium worldwide due to its lethality, persistence, wide host range and broad geographic distribution. Bacterial wilt caused by R. solanacearum affects over 250 plant species in over 50 families, including important crops such as potato, tomato, tobacco, banana, pepper and eggplant, among others, being responsible for enormous economic losses worldwide. The incidence of the disease is particularly dramatic for agriculture in many countries in inter-tropical regions, where R. solanacearum is endemic, although it is currently a continuing menace also in temperate climates, due to the incessant emergence of cold-tolerant strains and to global warming.R. solanacearum is a soil-borne pathogen that secretes more than 70 T3Es into the plant cell, and colonizes different plant organs, such as roots, stems and leaves. Our work aims to characterize plant processes in a tissue-specific manner, and to understand specific bacterial virulence factors in different plant organs and steps of the infection process. We use a wide array of host plants, including the model plant Arabidopsis thalianaNicotiana benthamiana and tomato.
 
Our laboratory was created in 2015 with the overall purpose of deciphering the molecular mechanisms of infection by plant-pathogenic bacteria (with special emphasis on the role of T3SS), the plant processes targeted by them and the associated plant signaling pathways. In recent years, it became evident that pathogens manipulate plant stress signaling to achieve infection, and research in this field constitutes a valuable opportunity to understand both bacterial virulence and plant signaling. For our research, we use an integrated multidisciplinary approach combining biochemistry, molecular biology and genetics, on both pathogen and host plants.


Conferences

Deciphering the molecular interface between plants and the bacterial pathogen Ralstonia solanacearum. Asian Conference on Plant Pathology, Jeju (South Korea), September 2017. Oral presentation.

 

Deciphering the molecular interface between plants and the bacterial pathogen Ralstonia solanacearum. 5th International Conference on Plant Biotic Interactions, Xiamen (China), August 2017. Oral presentation.

 

Deciphering the subversion of plant cellular functions by Ralstonia solanacearum type-III effectors. 1st Symposium on Plant Bacterial Wilt Disease Research in China, Chongqing (China), December 2016. Oral presentation.

 

Deciphering the subversion of plant cellular functions by Ralstonia solanacearum type-III effectors. International Bacterial Wilt Symposium, Toulouse (France), July 2016. Oral presentation.

 

Deciphering the molecular interface between plants and the bacterial pathogen Ralstonia solanacearum. CEPAMS Symposium, Shanghai (China), March 2016. Oral presentation.

 

Characterizing bacterial type-III effectors to decipher the molecular interface between plants and bacterial pathogens. POSTECH International Winter conference on Plant Sciences. Pohang (South Korea), January 2016. Oral presentation.

 

Bacterial type-III effectors and the suppression of plant immune signalling. 9th International Conference on Pseudomonas syringae and related pathogens. Málaga (Spain), June 2015. Oral presentation.

 

A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. 2nd Annual Conference of the COST SUSTAIN action. Zakopane (Poland). October 2014. Oral presentation

 

A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. 1st COST FA1208 International Workshop on structure-guided investigation of effector function, action and recognition. Bucharest (Romania). September 2014. Oral presentation

 

Role of phosphorylation in the activation of plant innate immune receptors. FEBS Young Scientists Program. Paris (France). August 2014. Oral presentation.

 

A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. XVI International Congress on Molecular Plant-Microbe Interactions. Rhodes (Greece). July 2014. Oral presentation

 

Role of phosphorylation in surface immune receptor complexes and its targeting by a bacterial effector protein. V Meeting of the Effectome Network. Lauret (France) October 2012. Oral presentation.

 

The novel short LRR-RK SEL is a positive regulator of PAMP-triggered immunity. Annual Meeting of the American Society of Plant Biologists. Austin, TX (USA), July 2012. Oral presentation.

 

The novel short LRR-RK SEL is a positive regulator of PAMP-triggered immunity. Gordon Research Conference on Plant Molecular Biology. Holderness, NH (USA), July 2012. Oral presentation.

 

The novel short LRR-RK SEL is a positive regulator of PAMP-triggered immunity. Rank Prize Funds Mini-symposium on New Horizons in Plant-pathogen Interactions. Windemere (United Kingdom), May 2012. Oral presentation.

 

The Pseudomonas syringae type III effector HopZ1a suppresses effector-triggered immunity. 8th International Conference on Pseudomonas syringae and related pathogens. Oxford (United Kingdom), August 2010. Oral presentation


Students

已指导学生

王远征  博士研究生  071010-生物化学与分子生物学  

鲜刘  博士研究生  071010-生物化学与分子生物学  

王亚如  博士研究生  071010-生物化学与分子生物学  

罗佳敏  博士研究生  071010-生物化学与分子生物学  

魏雅丽  博士研究生  071010-生物化学与分子生物学  

薛好  硕士研究生  071010-生物化学与分子生物学  

现指导学生

于文佳  博士研究生  071010-生物化学与分子生物学  

刘昕  博士研究生  071010-生物化学与分子生物学  

陈玉姣  硕士研究生  071010-生物化学与分子生物学  

赵阿晨  博士研究生  071010-生物化学与分子生物学  

李蒙  硕士研究生  071010-生物化学与分子生物学  

董倩  硕士研究生  071001-植物学  

王文隽  硕士研究生  071007-遗传学  

戴雨沁  硕士研究生  071010-生物化学与分子生物学  

Honors & Distinctions

Awardee of Young 1000 Talents Program – Central Organization Department of China (2015).

 

FEBS Distinguished Young Investigator Award (2015).

 

FEBS Long-term Postdoctoral Fellowship (2011 – 2014). 

 

Extraordinary Doctorate Award, University of Malaga (2010).

 

EMBO Short Term Fellowship (2008).