潘曹峰 男 国家纳米科学中心
电子邮件:pcf.tsinghua@gmail.com
通信地址:北京市海淀区双清路18号
邮政编码:

研究领域

   
1.压电光电子学效应及其在光电子器件中的应用
        压电效应是压电材料,如氧化锌、氮化镓、锆钛酸铅等,在应力作用下产生形变时出现的一种内部电势的现象。压电效应已经广泛应用于微机械传感、器件驱动和能源领域。对于氧化锌、氮化镓等半导体材料,由于同时具有压电性和半导体性,压电效应可以改变金属-半导体的界面势垒和p-n结的输运性质,这就是压电电子学。如果器件在源极或漏极中有一端或两端是肖特基接触的,当激光照射在源极或漏极时,由于压电效应、光激发和半导体特性的三相耦合,可以产生一种新的效应,即压电光电子学效应。压电光电子学可以利用压电电场来调控载流子的产生、传输、分离和复合,在发光二极管、光探测和太阳能电池等领域中都有广泛的应用。最近,我们已经实现以应变调控发光二极管的发光强度和发光效率,以应变来提高光探测的效率;以及用应变来调控太阳能电池的性能。我们正在利用这一效应构建新一代自驱动纳米传感器系统。 

代表作:
1) Pan, C. F.; Niu, S.M.; Ding, Y.; Dong, L.; Yu, R. M.; Liu, Y.; Zhu, G. and Wang, Z. L, Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect, Nano Letters, online
2.纳米发电机及“混合”纳米发电机及其在自驱动纳米系统中的应用
        纳米技术作为21世纪的一个重要新兴科技领域,在理论与实践上正经历着高速的发展。大量新型纳米材料与器件不断被开发出来,并在生物医学、国防以及人们日常生活的各个领域中展现出前所未有的应用前景。然而,纳米技术发展到今日,大量的研究都集中于开发高灵敏度,高性能的纳米器件,很少有关于纳米尺度的电源系统研究。但是,应用于生物及国防等方面的纳米传感器对这种电源系统的需求却与日俱增。如果这些传感器能从环境中自己给自己提供电源,从而实现器件和电源的同时小型化,将是极具意义的。之前,我们课题已经研究出了基于氧化锌纳米线的纳米发电机,能够将环境中的机械能转化为电能。
        我们生活的环境中还充满了其它各种各样的能量, 如肌肉活动能、化学能、生物能、微风能、太阳能、热能等。如果我们能够制造一个纳米器件,能够同时或者独立地利用环境中的多种能量,产生电能,那将是非常有意义的。我们之前的工作中已经研究了利用机械能/太阳能,和机械能/生物化学能的两种混合纳米发电机,并且这两种混合发电机在自驱动纳米系统中的应用。 

代表作:
1) Pan, C. F.; Guo, W. X.; Dong, L.; Zhu, G. and Wang, Z. L, Optical-fiber based core-shell coaxially structured hybrid cell for self-powered nanosystems, 2012, Advanced Materials, online.
2) Pan, C. F.; Li, Z. T.; Guo, W. X.; Zhu, J.; and Wang, Z. L, Fiber-based hybrid nanogenerators for/as self-powered systems in bio-liquid, Angewandte Chemie International Edition, 2011, 50, 11192-11196.
3.纳米线太阳能电池及其在自驱动纳米系统中的应用
        如今,能源已经成为限制人类社会发展的一个最关键的问题。由于石油、煤等能源的不可再生,全人类都在努力寻找新的“可再生”的“绿色”替代能源,如风能、核能和氢能,以维持人类社会的可持续发展。太阳能是一种清洁的、可再生的、用之不尽取之不竭的能源,目前在美国、日本和以色列等国家,已经大量使用太阳能装置,更朝商业化的目标前进。如何降低太阳能电池的成本,提高太阳能电池的能量转换效率是目前研究中急待解决的问题。
        纳米线材料由于其大的表面/体积比,大的长径比,其具有很多优异的物理性能,被认为有望提升太阳能电性能并降低成本。我们利用金属催化腐蚀的方法,在硅晶片表面得到大面积的硅纳米线阵列,该硅纳米线阵列具有很好的减反射性能。我们还利用超高真空物理气相沉积制备了大面积的硅-硅锗单晶外延芯-壳结构纳米线阵列,并制备出太阳能电池,其能量转化效率为3.26%。 

代表作:
Pan, C. F.; Luo, Z. X.; Xu, C.; Luo, J.; Liang, R. R.; Zhu, G.; Wu, W. Z.; Guo, W. X.; Yan, X. X.; Xu, J.; Wang, Z. L.; Zhu, J., Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si1-xGex Wires: Fabrication, Characterization and Photovoltaic Application. ACS Nano 2011, 5 (8), 6629-6636.
4.纳米燃料电池和纳米生物燃料电池及其在自驱动纳米系统中的应用
        随着纳米科学与技术的发展,利用纳米材料的独特性能,已经开发出大量功能强大的纳米器件,如纳米生物传感器、可植入体内的实时医疗监控器、血糖检测传感器等。这些器件体积小、耗能小,而且功能强大、智能化程度高,但是这些纳米器件也需外部能源的供给才能工作。为了给这些纳米尺度的微小器件提供电能,我们需要设计小体积、可持续、稳定的,能长期持久工作的、便于维护的、尺寸与功率与纳米器件相匹配的纳米能源。这些微小的纳米能源一旦研制成功,应用前景将非常广阔。
        我们已经成功合成出质子传导纳米线(Nafion纳米线),并且发现由于分子结构在合成纳米线的过程中发生了重排,该纳米线具有远优于块体的质子传导性能。利用这些质子传导纳米线,我们已经制备出了纳米尺度的燃料电池和生物燃料电池,并且实现了利用这些纳米燃料电池和纳米生物燃料电池来驱动纳米器件。 

代表作:
1) Pan, C. F.; Fang, Y.; Wu, H.; Ahmad, M.; Luo, Z. X.; Li, Q. A.; Xie, J. B.; Yan, X. X.; Wu, L. H.; Wang, Z. L.; Zhu, J., Generating Electricity from Biofluid with a Nanowire-Based Biofuel Cell for Self-Powered Nanodevices. Advanced Materials 2010, 22 (47), 5388-5392. 
2) Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X.; Zhu, J., Nanowire-based high performance "micro fuel cell": One nanowire, one fuel cell. Advanced Materials 2008, 20 (9), 1644-1648. 
3) Pan, C. F.; Luo, J.; Zhu, J., From Proton Conductive Nanowires to Nanofuel Cells: A powerful Candidate Generating Electricity for Self-Powered Nanosystems. Nano Research 2011, online publication. 
4) 潘曹峰,朱静,基于单根纳米线的纳米燃料电池研究进展,科学通报,53(21),2008,2671(邀稿,中文核心)

招生信息

   
招生专业
080501-材料物理与化学
080903-微电子学与固体电子学
080901-物理电子学
招生方向
压电光电子学效应及其在光电子器件中的应用
纳米发电机及“混合”纳米发电机及其在自驱动纳米系统中的应用
纳米线太阳能电池及其在自驱动纳米系统中的应用

教育背景

2005-09--2010-07 清华大学 工学博士

工作经历

   
工作简历
2010-08--2012-08 Georgia Institute of Technology 博士后

专利与奖励

   
奖励信息
(1) 北京市优秀博士论文奖,一等奖,省级,2011
(2) 清华大学优秀博士论文,二等奖,研究所(学校)级,2010
专利成果
(1) 一种生物化学纳米发电机及其制备方法,发明,2010,第1作者,专利号:201010163517.4

出版信息

   
发表论文
[1] Shaowei Shen, Yangjiu Zhao, Ruirui Cao, Haoyi Wu, Weifeng Zhang, Yuxuan Zhu, Kailiang Ren, Caofeng Pan. Triboelectric polymer with excellent enhanced electrical output performance over a wide temperature range. NANO ENERGY. 2023, 110: http://dx.doi.org/10.1016/j.nanoen.2023.108347.
[2] Wan, Yixin, Tao, Juan, Dong, Ming, Zhang, Li, Peng, Zhengchun, Bao, Rongrong, Pan, Caofeng. Flexible Intelligent Sensing System for Plane Complex Strain Monitoring. ADVANCED MATERIALS TECHNOLOGIES[J]. 2022, 7(12): http://dx.doi.org/10.1002/admt.202200386.
[3] Xu, Huayu, Tao, Juan, Liu, Yue, Mo, Yepei, Bao, Rongrong, Pan, Caofeng. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing. SMALL[J]. 2022, 18(37): http://dx.doi.org/10.1002/smll.202202477.
[4] Jianping Meng, Qi Li, Jing Huang, Caofeng Pan, Zhou Li. Self-powered photodetector for ultralow power density UV sensing. NANO TODAY[J]. 2022, 43: 101399-, [5] He, Jiang, Zhou, Runhui, Zhang, Yufei, Gao, Wenchao, Chen, Tao, Mai, Wenjie, Pan, Caofeng. Strain-Insensitive Self-Powered Tactile Sensor Arrays Based on Intrinsically Stretchable and Patternable Ultrathin Conformal Wrinkled Graphene-Elastomer Composite. ADVANCED FUNCTIONAL MATERIALS[J]. 2022, 32(10): http://dx.doi.org/10.1002/adfm.202107281.
[6] Yuan, Zuqing, Wang, Chunfeng, Xi, Jianguo, Han, Xun, Li, Jing, Han, SuTing, Gao, Wenchao, Pan, Caofeng. Spherical Triboelectric Nanogenerator with Dense Point Contacts for Harvesting Multidirectional Water Wave and Vibration Energy. ACS ENERGY LETTERS[J]. 2021, 6(8): 2809-2816, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000686077800020.
[7] 彭登峰, 刘宪虎, 潘曹峰. 外延-剥离技术实现单晶钙钛矿的可控制备. 科学通报:英文版[J]. 2021, 66(1): 6-8, http://lib.cqvip.com/Qikan/Article/Detail?id=7104049430.
[8] 彭登峰, 王春枫, 马荣华, 毛少辉, 曲思岑, 任占兵, Sergii, Golovynskyi, 潘曹峰. 应力发光材料助力运动分析. 科学通报:英文版[J]. 2021, 66(3): 206-209, http://lib.cqvip.com/Qikan/Article/Detail?id=7104233942.
[9] Sun, Junlu, Chang, Yu, Dong, Lin, Zhang, Kuikui, Hua, Qilin, Zang, Jinhao, Chen, Qiushuo, Shang, Yuanyuan, Pan, Caofeng, Shan, Chongxin. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. NANO ENERGY[J]. 2021, 86: http://dx.doi.org/10.1016/j.nanoen.2021.106077.
[10] Zhou, Kangkang, Zhao, Yi, Sun, Xiupeng, Yuan, Zuqing, Zheng, Guoqiang, Dai, Kun, Mi, Liwei, Pan, Caofeng, Liu, Chuntai, Shen, Changyu. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. NANO ENERGY[J]. 2020, 70: http://dx.doi.org/10.1016/j.nanoen.2020.104546.
[11] Li, Jing, Bao, Rongrong, Tao, Juan, Dong, Ming, Zhang, Yufei, Fu, Sheng, Peng, Dengfeng, Pan, Caofeng. Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors. APPLIED PHYSICS REVIEWS[J]. 2020, 7(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000519611700001.
[12] 鲍容容, 潘曹峰. 基于压电电子学效应的仿生功率调节器件. 科学通报:英文版[J]. 2020, 65(15): 1228-1230, http://lib.cqvip.com/Qikan/Article/Detail?id=7102431142.
[13] 刘月, 鲍容容, 陶娟, 李静, 董明, 潘曹峰. 触觉传感器及其在智能系统中的应用研究进展. 科学通报:英文版[J]. 2020, 65(1): 70-88, http://lib.cqvip.com/Qikan/Article/Detail?id=7100997436.
[14] 袁祖庆, 潘曹峰. 固液接触起电中电子转移的量化研究. 科学通报:英文版[J]. 2020, 65(11): 868-869, http://lib.cqvip.com/Qikan/Article/Detail?id=7101861947.
[15] Liu, Yue, Bao, Rongrong, Tao, Juan, Li, Jing, Dong, Ming, Pan, Caofeng. Recent progress in tactile sensors and their applications in intelligent systems. SCIENCE BULLETIN[J]. 2020, 65(1): 70-88, http://dx.doi.org/10.1016/j.scib.2019.10.021.
[16] Xia, Kailun, Wu, Wenqiang, Zhu, Mengjia, Shen, Xinyi, Yin, Zhe, Wang, Haomin, Li, Shuo, Zhang, Mingchao, Wang, Huimin, Lu, Haojie, Pan, Anlian, Pan, Caofeng, Zhang, Yingying. CVD growth of perovskite/graphene films for high-performance flexible image sensor. SCIENCE BULLETIN[J]. 2020, 65(5): 343-349, http://dx.doi.org/10.1016/j.scib.2019.12.015.
[17] 王春枫, 彭登峰, 潘曹峰. 先进仿生皮肤的力致发光材料. 科学通报:英文版[J]. 2020, 65(14): 1147-1149, http://lib.cqvip.com/Qikan/Article/Detail?id=7102303872.
[18] Ma, Wenda, Lu, Junfeng, Wan, Bensong, Peng, Dengfeng, Xu, Qian, Hu, Guofeng, Peng, Yiyao, Pan, Caofeng, Wang, Zhong Lin. Piezoelectricity in Multilayer Black Phosphorus for Piezotronics and Nanogenerators. ADVANCED MATERIALS[J]. 2020, 32(7): http://dx.doi.org/10.1002/adma.201905795.
[19] Liu, Jihong, Zhang, Zicai, Qiao, Shuang, Fu, Guangsheng, Wang, Shufang, Pan, Caofeng. Lateral bipolar photoresistance effect in the CIGS heterojunction and its application in position sensitive detector and memory device. SCIENCE BULLETIN[J]. 2020, 65(6): 477-485, http://dx.doi.org/10.1016/j.scib.2019.11.016.
[20] Wan, Bensong, Guo, Shaoqiang, Sun, Jiacheng, Zhang, Yufei, Wang, Yuyan, Pan, Caofeng, Zhang, Junying. Investigating the interlayer electron transport and its influence on the whole electric properties of black phosphorus. SCIENCE BULLETIN[J]. 2019, 64(4): 254-260, http://lib.cqvip.com/Qikan/Article/Detail?id=7001689599.
[21] Wang, Chunfeng, Pan, Caofeng, Wang, Zhonglin. Electronic Skin for Closed-Loop Systems. ACS NANO[J]. 2019, 13(11): 12287-12293, https://www.webofscience.com/wos/woscc/full-record/WOS:000500650000008.
[22] Ma, Wenda, Lu, Junfeng, Yang, Zheng, Peng, Dengfeng, Li, Fangtao, Peng, Yiyao, Chen, Qiushuo, Sun, Junlu, Xi, Jianguo, Pan, Caofeng. Crystal-Orientation-Related Dynamic Tuning of the Lasing Spectra of CdS Nanobelts by Piezoelectric Polarization. ACS NANO[J]. 2019, 13(5): 5049-5057, https://www.webofscience.com/wos/woscc/full-record/WOS:000469886300017.
[23] Tao, Juan, Bao, Rongrong, Wang, Xiandi, Peng, Yiyao, Li, Jing, Fu, Sheng, Pan, Caofeng, Wang, Zhong Lin. Self-Powered Tactile Sensor Array Systems Based on the Triboelectric Effect. ADVANCED FUNCTIONAL MATERIALSnull. 2019, 29(41): [24] Pan, Caofeng, Zhai, Junyi, Wang, Zhong Lin. Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires. CHEMICAL REVIEWSnull. 2019, 119(15): 9303-9359, http://dx.doi.org/10.1021/acs.chemrev.8b00599.
[25] Peng, Yiyao, Lu, Junfeng, Peng, Dengfeng, Ma, Wenda, Li, Fangtao, Chen, Qiushuo, Wang, Xiandi, Sun, Junlu, Liu, Haitao, Pan, Caofeng. Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(42): https://www.webofscience.com/wos/woscc/full-record/WOS:000480442400001.
[26] Li, Li, Zhang, Yufei, Wang, Rongming, Sun, Junlu, Si, Yuan, Wang, Hui, Pan, Caofeng, Dai, Yejing. Ferroelectricity-induced performance enhancement of V-doped ZnO/Si photodetector by direct energy band modulation. NANO ENERGY[J]. 2019, 65: http://dx.doi.org/10.1016/j.nanoen.2019.104046.
[27] Lu, Junfeng, Yang, Zheng, Li, Fangtao, Jiang, Mingming, Zhang, Yufei, Sun, Junlu, Hu, Guofeng, Xu, Qian, Xu, Chunxiang, Pan, Caofeng, Wang, Zhong Lin. Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect. MATERIALS TODAY[J]. 2019, 24: 33-40, http://dx.doi.org/10.1016/j.mattod.2018.12.001.
[28] Pan Caofeng. Controllable Growth of Aligned Monocrystalline CsPbBr3 Microwire Arrays for Piezoelectric-Induced Dynamic Modulation of Single-Mode Lasing. Advanced Materials. 2019, [29] Wang, Fulei, Wang, Fuling, Wang, Xiandi, Wang, Shicai, Jiang, Jianfeng, Liu, Qilu, Hao, Xiaotao, Han, Lin, Wang, Jianjun, Pan, Caofeng, Liu, Hong, Sang, Yuanhua. Mechanoluminescence enhancement of ZnS:Cu,Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. NANO ENERGY[J]. 2019, 63: 103861-, http://dx.doi.org/10.1016/j.nanoen.2019.103861.
[30] Li, Fangtao, Lu, Junfeng, Zhang, Qinglin, Peng, Dengfeng, Yang, Zheng, Xu, Qian, Pan, Caofeng, Pan, Anlian, Li, Tianfeng, Wang, Rongming. Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. SCIENCE BULLETIN[J]. 2019, 64(10): 698-704, https://www.sciengine.com/doi/10.1016/j.scib.2019.04.016.
[31] He, Jiang, Xiao, Peng, Lu, Wei, Shi, Jiangwei, Zhang, Ling, Liang, Yun, Pan, Caofeng, Kuo, ShiaoWei, Chen, Tao. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. NANO ENERGY[J]. 2019, 59: 422-433, http://dx.doi.org/10.1016/j.nanoen.2019.02.036.
[32] Sun, Junlu, Hua, Qilin, Zhou, Ranran, Li, Dongmei, Guo, Wenxi, Li, Xiaoyi, Hu, Guofeng, Shan, Chongxin, Meng, Qingbo, Dong, Lin, Pan, Caofeng, Wang, Zhong Lin. Piezo-phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells. ACS NANO[J]. 2019, 13(4): 4507-4513, http://dx.doi.org/10.1021/acsnano.9b00125.
[33] Peng, Yiyao, Que, Miaoling, Lee, Han Eol, Bao, Rongrong, Wang, Xiandi, Lu, Junfeng, Yuan, Zuqing, Li, Xiaoyi, Tao, Juan, Sun, Junlu, Zhai, Junyi, Lee, Keon Jae, Pan, Caofeng. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect. NANO ENERGY[J]. 2019, 58: 633-640, http://dx.doi.org/10.1016/j.nanoen.2019.01.076.
[34] Wang, Xiandi, Peng, Dengfeng, Huang, Bolong, Pan, Caofeng, Wang, Zhong Lin. Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. NANO ENERGY[J]. 2019, 55: 389-400, http://dx.doi.org/10.1016/j.nanoen.2018.11.014.
[35] Junfeng Lu, Fangtao Li, Wenda Ma, Jufang Hu, Yiyao Peng, Zheng Yang, Qiushuo Chen, Chunxiang Xu, Caofeng Pan, Zhong Lin Wang. Two Photon–Pumped Whispering‐Gallery Mode Lasing and Dynamic Regulation. ADVANCED SCIENCE[J]. 2019, 6(22): n/a-n/a, https://doaj.org/article/fc75280ea118492ebdc8c2be77316b1c.
[36] Liu, Hu, Li, Qianming, Bu, Yibing, Zhang, Na, Wang, Chunfeng, Pan, Caofeng, Mi, Liwei, Guo, Zhanhu, Liu, Chuntai, Shen, Changyu. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104143.
[37] Wu, Wenqiang, Wang, Xiandi, Han, Xun, Yang, Zheng, Gao, Guoyun, Zhang, Yufei, Hu, Jufang, Tan, Yongwen, Pan, Anlian, Pan, Caofeng. Flexible Photodetector Arrays Based on Patterned CH3NH3PbI3-xClx Perovskite Film for Real-Time Photosensing and Imaging. ADVANCED MATERIALS[J]. 2019, 31(3): [38] Xu, Qian, Yang, Zheng, Peng, Dengfeng, Xi, Jianguo, Lin, Pei, Cheng, Yang, Liu, Kaihui, Pan, Caofeng. WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. NANO ENERGY[J]. 2019, 65: http://dx.doi.org/10.1016/j.nanoen.2019.104001.
[39] Chen, Mengxiao, Zhao, Bin, Hu, Guofeng, Fang, Xiaosheng, Wang, Hui, Wang, Lei, Luo, Jun, Han, Xun, Wang, Xiandi, Pan, Caofeng, Wang, Zhong Lin. Piezo-Phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(14): https://www.webofscience.com/wos/woscc/full-record/WOS:000429410400014.
[40] Liu, Xingqiang, Liang, Renrong, Gao, Guoyun, Pan, Caofeng, Jiang, Chunsheng, Xu, Qian, Luo, Jun, Zou, Xuming, Yang, Zhenyu, Liao, Lei, Wang, Zhong Lin. MoS2 Negative-Capacitance Field-Effect Transistors with Subthreshold Swing below the Physics Limit. ADVANCED MATERIALS[J]. 2018, 30(28): https://www.webofscience.com/wos/woscc/full-record/WOS:000439994500022.
[41] Gao, Guoyun, Wan, Bensong, Liu, Xingqiang, Sun, Qijun, Yang, Xiaonian, Wang, Longfei, Pan, Caofeng, Wang, Zhong Lin. Tunable Tribotronic Dual-Gate Logic Devices Based on 2D MoS2 and Black Phosphorus. ADVANCED MATERIALS[J]. 2018, 30(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000428793600007.
[42] Lai, Qingsong, Zhu, Laipan, Pang, Yaokun, Xu, Lian, Chen, Jian, Ren, Zewei, Luo, Jianjun, Wang, Longfei, Chen, Libo, Han, Kai, Lin, Pei, Li, Ding, Lin, Shiquan, Chen, Baodong, Pan, Caofeng, Wang, Zhong Lin. Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single Crystals. ACS NANO[J]. 2018, 12(10): 10501-10508, https://www.webofscience.com/wos/woscc/full-record/WOS:000448751800088.
[43] Qilin Hua, Junlu Sun, Haitao Liu, Rongrong Bao, Ruomeng Yu, Junyi Zhai, Caofeng Pan, Zhong Lin Wang. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/c407bea79b4e49108d748eb77aada123.
[44] Lu, Junfeng, Xu, Chunxiang, Li, Fangtao, Yang, Zheng, Peng, Yiyao, Li, Xiaoyi, Que, Miaoling, Pan, Caofeng, Wang, Zhong Lin. Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. ACS NANO[J]. 2018, 12(12): 11899-11906, https://www.webofscience.com/wos/woscc/full-record/WOS:000454567500017.
[45] Qiao, Shuang, Liu, Jihong, Niu, Xiaona, Liang, Baolai, Fu, Guangsheng, Li, Zhiqiang, Wang, Shufang, Ren, Kailiang, Pan, Caofeng. Piezophototronic Effect Enhanced Photoresponse of the Flexible Cu(In,Ga)Se-2 (CIGS) Heterojunction Photodetectors. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000431615300011.
[46] Qiao, Shuang, Liu, Jihong, Fu, Guangsheng, Ren, Kailiang, Li, Zhiqiang, Wang, Shufang, Pan, Caofeng. ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect. NANO ENERGY[J]. 2018, 49: 508-514, http://dx.doi.org/10.1016/j.nanoen.2018.04.070.
[47] Xu, Qian, Liu, Xingqiang, Wan, Bensong, Yang, Zheng, Li, Fangtao, Lu, Junfeng, Hu, Guofeng, Pan, Caofeng, Wang, Zhong Lin. In2O3 Nanowire Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and Their Logic Applications. ACS NANO[J]. 2018, 12(9): 9608-9616, https://www.webofscience.com/wos/woscc/full-record/WOS:000445972400082.
[48] Yang, Zheng, Xu, Qian, Wang, Xiandi, Lu, Junfeng, Wang, Hui, Li, Fangtao, Zhang, Li, Hu, Guofeng, Pan, Caofeng. Large and Ultrastable All-Inorganic CsPbBr3 Monocrystalline Films: Low-Temperature Growth and Application for High-Performance Photodetectors. ADVANCED MATERIALS[J]. 2018, 30(44): https://www.webofscience.com/wos/woscc/full-record/WOS:000450232800027.
[49] Pan Caofeng. Tunable tribotronic dualgate logic device based on MoS2 and black phosphorus transistors. Advanced Materials. 2018, [50] Wang, Xiandi, Ling, Rui, Zhang, Yufei, Que, Miaoling, Peng, Yiyao, Pan, Caofeng. Oxygen-assisted preparation of mechanoluminescent ZnS:Mn for dynamic pressure mapping. NANO RESEARCH[J]. 2018, 11(4): 1967-1976, http://lib.cqvip.com/Qikan/Article/Detail?id=674998916.
[51] Li, Xiaoyi, Tao, Juan, Wang, Xiandi, Zhu, Jing, Pan, Caofeng, Wang, Zhong Lin. Networks of High Performance Triboelectric Nanogenerators Based on Liquid-Solid Interface Contact Electrification for Harvesting Low-Frequency Blue Energy. ADVANCED ENERGY MATERIALS[J]. 2018, 8(21): https://www.webofscience.com/wos/woscc/full-record/WOS:000445666000023.
[52] Cong, Ridong, Qiao, Shuang, Liu, Jihong, Mi, Jiansong, Yu, Wei, Liang, Baolai, Fu, Guangsheng, Pan, Caofeng, Wang, Shufang. Ultrahigh, Ultrafast, and Self-Powered Visible-Near-Infrared Optical Position-Sensitive Detector Based on a CVD-Prepared Vertically Standing Few-Layer MoS2/Si Heterojunction. ADVANCED SCIENCE[J]. 2018, 5(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000426200000019.
[53] Pan Caofeng. Piezophototronic Effect for Enhanced Flexible MoS2/WSe2 Van der Waals Photodiode. Advanced Functional Materials. 2018, [54] Wang, Xiandi, Zhang, Yufei, Zhang, Xiaojia, Huo, Zhihao, Li, Xiaoyi, Que, Miaoling, Peng, Zhengchun, Wang, Hui, Pan, Caofeng. A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. ADVANCED MATERIALS[J]. 2018, 30(12): [55] Xue, Fei, Yang, Leijing, Chen, Mengxiao, Chen, Jian, Yang, Xiaonian, Wang, Longfei, Chen, Libo, Pan, Caofeng, Wang, Zhong Lin. Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG ASIA MATERIALS[J]. 2017, 9: https://www.webofscience.com/wos/woscc/full-record/WOS:000406941500004.
[56] Pan Caofeng. Vertical layered MoS2/Si heterojunction for ultrahigh and ultrafast photoresponse photodetector. Journal of Materials Chemistry C. 2017, [57] Han, SuTing, Hu, Liang, Wang, Xiandi, Zhou, Ye, Zeng, YuJia, Ruan, Shuangchen, Pan, Caofeng, Peng, Zhengchun. Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. ADVANCED SCIENCE[J]. 2017, 4(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000408105000003.
[58] Que, MiaoLing, Wang, XianDi, Peng, YiYao, Pan, CaoFeng. Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure. CHINESE PHYSICS B[J]. 2017, 26(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000403061400001.
[59] Wang, Wei, Peng, Dengfeng, Zhang, Hanlu, Yang, Xiaohong, Pan, Caofeng. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging. OPTICS COMMUNICATIONS[J]. 2017, 395: 24-28, http://dx.doi.org/10.1016/j.optcom.2016.03.046.
[60] Pan Caofeng. Flexibly and Repeatedly Tunning Lasing Wavelengths in Single Core-Shell Semiconductor Microrod. ACS Nano. 2017, [61] Pan Caofeng. "Flexible LED Arrays Made of Transferred Si-Microwires-ZnO-Nanofilm with Piezo-Phototronic Effect Enhanced Lighting. ACS Nano. 2017, [62] Wang, Xiandi, Que, Miaoling, Chen, Mengxiao, Han, Xun, Li, Xiaoyi, Pan, Caofeng, Wang, Zhong Lin. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing. ADVANCED MATERIALS[J]. 2017, 29(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000399313400016.
[63] Han, Xun, Du, Weiming, Chen, Mengxiao, Wang, Xiandi, Zhang, Xiaojia, Li, Xiaoyi, Li, Jing, Peng, Zhengchun, Pan, Caofeng, Wang, Zhong Lin. Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the Piezotronic Effect. ADVANCED MATERIALS[J]. 2017, 29(26): https://www.webofscience.com/wos/woscc/full-record/WOS:000404982700034.
[64] Wang, Chunfeng, Zhao, Jing, Ma, Chuang, Sun, Junlu, Tian, Li, Li, Xiaoyi, Li, Fangtao, Han, Xun, Liu, Chuntai, Shen, Changyu, Dong, Lin, Yang, Jin, Pan, Caofeng. Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. NANO ENERGY[J]. 2017, 34: 578-585, http://dx.doi.org/10.1016/j.nanoen.2017.02.050.
[65] Bao, Rongrong, Wang, Chunfeng, Peng, Zhengchun, Ma, Chuang, Dong, Lin, Pan, Caofeng. Light-Emission Enhancement in a Flexible and Size-Controllable ZnO Nanowire/Organic Light-Emitting Diode Array by the Piezotronic Effect. ACS PHOTONICS[J]. 2017, 4(6): 1344-1349, https://www.webofscience.com/wos/woscc/full-record/WOS:000404098200009.
[66] Huang, Bolong, Peng, Dengfeng, Pan, Caofeng. "Energy Relay Center" for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(2): 1190-1208, https://www.webofscience.com/wos/woscc/full-record/WOS:000392399400028.
[67] Pan Caofeng. A Nanowire Based Triboelectric Nanogenerator for Harvesting Water Wave Energy and Its Application. APL Mater.. 2017, [68] Li, Fei, Wang, Xiandi, Xia, Zhiguo, Pan, Caofeng, Liu, Quanlin. Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. ADVANCED FUNCTIONAL MATERIALS[J]. 2017, 27(17): https://www.webofscience.com/wos/woscc/full-record/WOS:000400449200012.
[69] Fang, Huajing, Wang, Xiandi, Li, Qiang, Peng, Dengfeng, Yan, Qingfeng, Pan, Caofeng. A Stretchable Nanogenerator with Electric/Light Dual-Mode Energy Conversion. ADVANCED ENERGY MATERIALS[J]. 2016, 6(18): http://dx.doi.org/10.1002/aenm.201600829.
[70] Zhang, Xiaojia, Guo, Wenxi, Pan, Caofeng. Transparent conducting oxide-free and Pt-free flexible dye-sensitized solar cells employing CuS-nanosheet networks as counter electrodes. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(17): 6569-6576, https://www.webofscience.com/wos/woscc/full-record/WOS:000374862600039.
[71] Pan Caofeng. TiO2 nanorod array as highly affinitive nano-bio interface of microfluidic device for efficient capture of circulating tumor cells. Nano Research. 2016, [72] Wang, Xiandi, Zhang, Hanlu, Dong, Lin, Han, Xun, Du, Weiming, Zhai, Junyi, Pan, Caofeng, Wang, Zhong Lin. Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping. ADVANCED MATERIALS[J]. 2016, 28(15): 2896-2903, https://www.webofscience.com/wos/woscc/full-record/WOS:000374336700005.
[73] Pan Caofeng. The CdS@SiO2 Core-Shell Electroluminescent Nanorod Array Based on Metal-Insulator-Semiconductor Structure. Small. 2016, [74] Pan Caofeng. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronics effect. Nano Energy. 2016, [75] Han, Xun, Chen, Mengxiao, Pan, Caofeng, Wang, Zhong Lin. Progress in piezo-phototronic effect enhanced photodetectors. JOURNAL OF MATERIALS CHEMISTRY Cnull. 2016, 4(48): 11341-11354, https://www.webofscience.com/wos/woscc/full-record/WOS:000390787600001.
[76] Pan Caofeng. Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistor by Piezo-Phototronic Effect from GaN Nanowire. ACSNANO. 2016, [77] Liu, Haitao, Zhang, Hanlu, Dong, Lin, Zhang, Yingjiu, Pan, Caofeng. Growth of GaN micro/nanolaser arrays by chemical vapor deposition. NANOTECHNOLOGY[J]. 2016, 27(35): [78] Que, Miaoling, Zhou, Ranran, Wang, Xiandi, Yuan, Zuqing, Hu, Guofeng, Pan, Caofeng. Progress in piezo-phototronic effect modulated photovoltaics. JOURNAL OF PHYSICS-CONDENSED MATTERnull. 2016, 28(43): https://www.webofscience.com/wos/woscc/full-record/WOS:000384085000001.
[79] Hua, Qilin, Liu, Haitao, Zhao, Jing, Peng, Dengfeng, Yang, Xiaonian, Gu, Lin, Pan, Caofeng. Bioinspired Electronic Whisker Arrays by Pencil-Drawn Paper for Adaptive Tactile Sensing. ADVANCED ELECTRONIC MATERIALS[J]. 2016, 2(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000379913000007.
[80] Pan Caofeng. Rational Design of ITO/CuS Nanosheet Network Composite Film as Counter Electrode for Flexible Dye Sensitized Solar Cell. J. Mater. Chem. C. 2016, [81] Zhang, Xiaojia, Guo, Wenxi, Gao, Guoyun, Que, Miaoling, Pan, Caofeng, Wang, Zhong Lin. CuS nanotrough-networks for highly stable transparent conducting electrodes. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2016, 4(21): 4733-4739, https://www.webofscience.com/wos/woscc/full-record/WOS:000377516900017.
[82] Liu, Haitao, Hua, Qilin, Yu, Ruomeng, Yang, Yuchao, Zhang, Taiping, Zhang, Yingjiu, Pan, Caofeng. A Bamboo-Like GaN Microwire-Based Piezotronic Memristor. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(29): 5307-5314, https://www.webofscience.com/wos/woscc/full-record/WOS:000382548000014.
[83] Pan Caofeng. Tuning Light Emission of a Pressure Sensitive Silicon/ZnO Nanowires Heterostructure Matrix Through Piezo-Phototronic Effect. ACS Nano. 2016, [84] Bao, Rongrong, Wang, Chunfeng, Dong, Lin, Shen, Changyu, Zhao, Kun, Pan, Caofeng. CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. NANOSCALE[J]. 2016, 8(15): 8078-8082, https://www.webofscience.com/wos/woscc/full-record/WOS:000374159600034.
[85] Pan Caofeng. Progress in Piezo-Phototronic Effect Enhanced Light-emitting Diode and Pressure Imaging. Adv. Mater.. 2016, [86] Yang, Xiaonian, Li, Qiang, Hu, Guofeng, Wang, Zegao, Yang, Zhenyu, Liu, Xingqiang, Dong, Mingdong, Pan, Caofeng. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. SCIENCE CHINA-MATERIALS[J]. 2016, 59(3): 182-190, https://www.webofscience.com/wos/woscc/full-record/WOS:000383102100004.
[87] Pan Caofeng. CoS NWs/Au hybirdized networks as efficient counter-electrode for flexible sensitized solar cell. Adv. Energy Mater.. 2015, [88] Zhou, Ranran, Hu, Guofeng, Yu, Ruomeng, Pan, Caofeng, Wang, Zhong Lin. Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. NANO ENERGY[J]. 2015, 12: 588-596, http://dx.doi.org/10.1016/j.nanoen.2015.01.036.
[89] Li, Xiaoyi, Chen, Mengxiao, Yu, Ruomeng, Zhang, Taiping, Song, Dongsheng, Liang, Renrong, Zhang, Qinglin, Cheng, Shaobo, Dong, Lin, Pan, Anlian, Wang, Zhong Lin, Zhu, Jing, Pan, Caofeng. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect. ADVANCED MATERIALS[J]. 2015, 27(30): 4447-4453, https://www.webofscience.com/wos/woscc/full-record/WOS:000359347300008.
[90] Wang, Xiandi, Zhang, Hanlu, Yu, Ruomeng, Dong, Lin, Peng, Dengfeng, Zhang, Aihua, Zhang, Yan, Liu, Hong, Pan, Caofeng, Wang, Zhong Lin. Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. ADVANCED MATERIALS[J]. 2015, 27(14): 2324-2331, [91] Zhao, Xiaoli, Hua, Qilin, Yu, Ruomeng, Zhang, Yan, Pan, Caofeng. Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. ADVANCED ELECTRONIC MATERIALS[J]. 2015, 1(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000358008400015.
[92] Bao, Rongrong, Wang, Chunfeng, Dong, Lin, Yu, Ruomeng, Zhao, Kun, Wang, Zhong Lin, Pan, Caofeng. Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array. ADVANCEDFUNCTIONALMATERIALS[J]. 2015, 25(19): 2884-2891, https://www.webofscience.com/wos/woscc/full-record/WOS:000354626800011.
[93] Wang, Xiandi, Dong, Lin, Zhang, Hanlu, Yu, Ruomeng, Pan, Caofeng, Wang, Zhong Lin. Recent Progress in Electronic Skin. ADVANCED SCIENCE[J]. 2015, 2(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000368999600009.
[94] Zhang, Taiping, Liang, Renrong, Dong, Lin, Wang, Jing, Xu, Jun, Pan, Caofeng. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1-x Ge (x) alloy heterojunction. NANO RESEARCH[J]. 2015, 8(8): 2676-2685, https://www.webofscience.com/wos/woscc/full-record/WOS:000359865100020.
[95] Du, Weiming, Han, Xun, Lin, Long, Chen, Mengxiao, Li, Xiaoyi, Pan, Caofeng, Wang, Zhong Lin. A Three Dimensional Multi-Layered Sliding Triboelectric Nanogenerator. ADVANCED ENERGY MATERIALS[J]. 2014, 4(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000340526900001.
[96] Que, Miaoling, Guo, Wenxi, Zhang, Xiaojia, Li, Xiaoyi, Hua, Qilin, Dong, Lin, Pan, Caofeng. Flexible quantum dot-sensitized solar cells employing CoS nanorod arrays/graphite paper as effective counter electrodes. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(33): 13661-13666, https://www.webofscience.com/wos/woscc/full-record/WOS:000340514500061.
[97] Pan Caofeng. Triboelectric nanogeneraters as a self-powered motion tracking system. ADVFUNMATERIALS. 2014, [98] Pan Caofeng. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensor. Nano Research. 2014, [99] Yang, Qing, Wu, Yuanpeng, Liu, Ying, Pan, Caofeng, Wang, Zhong Lin. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2014, 16(7): 2790-2800, https://www.webofscience.com/wos/woscc/full-record/WOS:000330054300004.
[100] Pan Caofeng. Enhanced performances of GaN nanobelt based photodetector by piezotronic effect. Nano Research. 2013, [101] Wu, Wenzhuo, Pan, Caofeng, Zhang, Yan, Wen, Xiaonan, Wang, Zhong Lin. Piezotronics and piezo-phototronics - From single nanodevices to array of devices and then to integrated functional system. NANO TODAYnull. 2013, 8(6): 619-642, http://dx.doi.org/10.1016/j.nantod.2013.11.002.
[102] Pan, Caofeng, Dong, Lin, Zhu, Guang, Niu, Simiao, Yu, Ruomeng, Yang, Qing, Liu, Ying, Wang, Zhong Lin. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. NATURE PHOTONICS[J]. 2013, 7(9): 752-758, https://www.webofscience.com/wos/woscc/full-record/WOS:000323715000018.
[103] Pan, Caofeng, Yu, Ruomeng, Niu, Simiao, Zhu, Guang, Wang, Zhong Lin. Piezotronic Effect on the Sensitivity and Signal Level of Schottky Contacted Proactive Micro/Nanowire Nanosensors. ACS NANO[J]. 2013, 7(2): 1803-1810, https://www.webofscience.com/wos/woscc/full-record/WOS:000315618700105.
[104] Yu, Ruomeng, Pan, Caofeng, Wang, Zhong Lin. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2013, 6(2): 494-499, https://www.webofscience.com/wos/woscc/full-record/WOS:000313892400011.
[105] Yang, Qing, Liu, Ying, Pan, Caofeng, Chen, Jun, Wen, Xiaonan, Wang, Zhong Lin. Largely Enhanced Efficiency in ZnO Nanowire/p-Polymer Hybridized Inorganic/Organic Ultraviolet Light-Emitting Diode by Piezo-Phototronic Effect. NANO LETTERS[J]. 2013, 13(2): 607-613, https://www.webofscience.com/wos/woscc/full-record/WOS:000315079500047.
[106] Yu, Ruomeng, Pan, Caofeng, Chen, Jun, Zhu, Guang, Wang, Zhong Lin. Enhanced Performance of a ZnO Nanowire-Based Self-Powered Glucose Sensor by Piezotronic Effect. ADVANCED FUNCTIONAL MATERIALS[J]. 2013, 23(47): 5868-5874, https://www.webofscience.com/wos/woscc/full-record/WOS:000328457000006.
[107] Zhu, Guang, Lin, ZongHong, Jing, Qingshen, Bai, Peng, Pan, Caofeng, Yang, Ya, Zhou, Yusheng, Wang, Zhong Lin. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. NANO LETTERS[J]. 2013, 13(2): 847-853, https://www.webofscience.com/wos/woscc/full-record/WOS:000315079500087.
[108] Pan Caofeng. Piezotronic effect on the transport property of GaN nanobelt for active flexible electronics. Advanced Materials. 2012, [109] Dong, Lin, Niu, Simiao, Pan, Caofeng, Yu, Ruomeng, Zhang, Yan, Wang, Zhong Lin. Piezo-Phototronic Effect of CdSe Nanowires. ADVANCED MATERIALS[J]. 2012, 24(40): 5470-5475, https://www.webofscience.com/wos/woscc/full-record/WOS:000309909600010.
[110] Pan, Caofeng, Guo, Wenxi, Dong, Lin, Zhu, Guang, Wang, Zhong Lin. Optical Fiber-Based Core-Shell Coaxially Structured Hybrid Cells for Self-Powered Nanosystems. ADVANCED MATERIALS[J]. 2012, 24(25): 3356-3361, https://www.webofscience.com/wos/woscc/full-record/WOS:000305553700009.
[111] Zhou, Yu Sheng, Wang, Kai, Han, Weihua, Rai, Satish Chandra, Zhang, Yan, Ding, Yong, Pan, Caofeng, Zhang, Fang, Zhou, Weilie, Wang, Zhong Lin. Vertically Aligned CdSe Nanowire Arrays for Energy Harvesting and Piezotronic Devices. ACS NANO[J]. 2012, 6(7): 6478-6482, https://www.webofscience.com/wos/woscc/full-record/WOS:000306673800082.
[112] Yu, Ruomeng, Dong, Lin, Pan, Caofeng, Niu, Simiao, Liu, Hongfei, Liu, Wei, Chua, Soojin, Chi, Dongzhi, Wang, Zhong Lin. Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics. ADVANCED MATERIALS[J]. 2012, 24(26): 3532-3537, https://www.webofscience.com/wos/woscc/full-record/WOS:000305943900011.
[113] Pan Caofeng. Optical-fiber based core-shell coaxially structured hybrid cell for self-powered nanosystems. Advanced Materials. 2012, [114] Wang, Zhong Lin, Zhu, Guang, Yang, Ya, Wang, Sihong, Pan, Caofeng. Progress in nanogenerators for portable electronics. MATERIALS TODAY[J]. 2012, 15(12): 532-543, http://dx.doi.org/10.1016/S1369-7021(13)70011-7.
[115] Pan, Caofeng, Niu, Simiao, Ding, Yong, Dong, Lin, Yu, Ruomeng, Liu, Ying, Zhu, Guang, Wang, Zhong Lin. Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. NANO LETTERS[J]. 2012, 12(6): 3302-3307, https://www.webofscience.com/wos/woscc/full-record/WOS:000305106400108.
[116] Guo, Wenxi, Xu, Chen, Wang, Xue, Wang, Sihong, Pan, Caofeng, Lin, Changjian, Wang, Zhong Lin. Rectangular Bunched Rutile TiO2 Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2012, 134(9): 4437-4441, https://www.webofscience.com/wos/woscc/full-record/WOS:000301550800084.
[117] Xu, Chen, Pan, Caofeng, Liu, Ying, Wang, Z L. Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems. NANO ENERGYnull. 2012, 1(2): 259-272, http://dx.doi.org/10.1016/j.nanoen.2012.01.002.
[118] Ahmad, Mashkoor, Pan, Caofeng, Zhao, Jiong, Zhu, Jing. Impact of Pb Doping on the Optical and Electrical Properties of ZnO Nanowires. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2011, 11(3): 1950-1957, https://www.webofscience.com/wos/woscc/full-record/WOS:000288102300017.
[119] Pan, Caofeng, Luo, Zhixiang, Xu, Chen, Luo, Jun, Liang, Renrong, Zhu, Guang, Wu, Wenzhuo, Guo, Wenxi, Yan, Xingxu, Xu, Jun, Wang, Zhong Lin, Zhu, Jing. Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si1-xGex Wires: Fabrication, Characterization, and Photovoltaic Application. ACS NANO[J]. 2011, 5(8): 6629-6636, https://www.webofscience.com/wos/woscc/full-record/WOS:000294085400066.
[120] Pan, Caofeng, Luo, Jun, Zhu, Jing. From proton conductive nanowires to nanofuel cells: A powerful candidate for generating electricity for self-powered nanosystems. NANO RESEARCH[J]. 2011, 4(11): 1099-1109, http://lib.cqvip.com/Qikan/Article/Detail?id=40762301.
[121] Caofeng Pan Jun Luo Jing Zhu. From Proton Conductive Nanowires to Nanofuel Cells: A Powerful Candidate for Generating Electricity for Self-Powered Nanosystems. 纳米研究:英文版[J]. 2011, 4(11): 1099-1109, http://lib.cqvip.com/Qikan/Article/Detail?id=40762301.
[122] Pan Caofeng. Fiber-based hybrid nanogenerators for/as self-powered systems in bio-liquid. Angewandte Chemie International Edition. 2011, [123] Luo, Jun, Warner, Jamie H, Feng, Chaoqun, Yao, Yagang, Jin, Zhong, Wang, Huiliang, Pan, Caofeng, Wang, Sheng, Yang, Leijing, Li, Yan, Zhang, Jin, Watt, Andrew A R, Peng, Lianmao, Zhu, Jing, Briggs, G Andrew D. Ultrahigh secondary electron emission of carbon nanotubes. APPLIED PHYSICS LETTERS[J]. 2010, 96(21): http://dx.doi.org/10.1063/1.3442491.
[124] Ahmad, Mashkoor, Pan, Caofeng, Zhao, Jiong, Iqbal, Javed, Zhu, Jing. Electron irradiation effect and photoluminescence properties of ZnO-tetrapod nanostructures. MATERIALS CHEMISTRY AND PHYSICS[J]. 2010, 120(2-3): 319-322, http://dx.doi.org/10.1016/j.matchemphys.2009.11.015.
[125] Pan, Caofeng, Fang, Ying, Wu, Hui, Ahmad, Mashkoor, Luo, Zhixiang, Li, Qiang, Xie, Jianbo, Yan, Xinxu, Wu, Lihua, Wang, Zhong Lin, Zhu, Jing. Generating Electricity from Biofluid with a Nanowire-Based Biofuel Cell for Self-Powered Nanodevices. ADVANCED MATERIALS[J]. 2010, 22(47): 5388-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000285397100010.
[126] Ahmad, Mashkoor, Gan, Lin, Pan, Caofeng, Zhu, Jing. Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres. ELECTROCHIMICA ACTA[J]. 2010, 55(22): 6885-6891, http://dx.doi.org/10.1016/j.electacta.2010.05.075.
[127] Mashkoor Ahmad, Caofeng Pan, Wang Yan, Jing Zhu. Effect of Pb-doping on the morphology, structural and optical properties of ZnO nanowires synthesized via modified thermal evaporation. MATERIALS SCIENCE & ENGINEERING B. 2010, 174(1): 55-58, http://dx.doi.org/10.1016/j.mseb.2010.03.039.
[128] Ahmad, Mashkoor, Pan, Caofeng, Gan, Lin, Nawaz, Zeeshan, Zhu, Jing. Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(1): 243-250, https://www.webofscience.com/wos/woscc/full-record/WOS:000273268600036.
[129] Ahmad, Mashkoor, RafiudDin, Pan, Caofeng, Zhu, Jing. Investigation of Hydrogen Storage Capabilities of ZnO-Based Nanostructures. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(6): 2560-2565, https://www.webofscience.com/wos/woscc/full-record/WOS:000274354800025.
[130] Ahmad, Mashkoor, Pan, Caofeng, Yan, Wang, Zhu, Jing. Effect of Pb-doping on the morphology, structural and optical properties of ZnO nanowires synthesized via modified thermal evaporation. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS[J]. 2010, 174(1-3): 55-58, http://dx.doi.org/10.1016/j.mseb.2010.03.039.
[131] Ahmad, Mashkoor, Pan, Caofeng, Luo, Zhixiang, Zhu, Jing. A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(20): 9308-9313, https://www.webofscience.com/wos/woscc/full-record/WOS:000277776900018.
[132] Ahmad, Mashkoor, Pan, Caofeng, Zhu, Jing. Electrochemical determination of L-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. JOURNAL OF MATERIALS CHEMISTRY[J]. 2010, 20(34): 7169-7174, https://www.webofscience.com/wos/woscc/full-record/WOS:000281109700016.
[133] Ahmad, Mashkoor, Zhao Jiong, Zhang Fan, Pan CaoFeng, Zhu Jing. One-step synthesis route of the aligned and non-aligned single crystalline alpha-Si3N4 nanowires. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES[J]. 2009, 52(1): 1-5, https://www.webofscience.com/wos/woscc/full-record/WOS:000262485100001.
[134] Pan, Caofeng, Zhu, Jing. The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. JOURNAL OF MATERIALS CHEMISTRYnull. 2009, 19(7): 869-884, [135] Ahmad, Mashkoor, Zhao, Jiong, Pan, Caofeng, Zhu, Jing. Ordered arrays of high-quality single-crystalline alpha-Si3N4 nanowires: Synthesis, properties and applications. JOURNAL OF CRYSTAL GROWTH[J]. 2009, 311(20): 4486-4490, https://www.webofscience.com/wos/woscc/full-record/WOS:000271366400005.
[136] Ahmad, Mashkoor, Pan, Caofeng, Iqbal, Javed, Gan, Lin, Zhu, Jing. Bulk synthesis route of the oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing capabilities. CHEMICAL PHYSICS LETTERS[J]. 2009, 480(1-3): 105-109, http://dx.doi.org/10.1016/j.cplett.2009.08.065.
[137] Mashkoor AHMAD, ZHAO Jiong, ZHANG Fan, PAN CaoFeng, ZHU Jing. One-step synthesis route of the aligned and non-aligned single crystalline α-Si_3N_4 nanowires. SCIENCE IN CHINA. SERIES E: TECHNOLOGICAL SCIENCES[J]. 2009, 52(1): 1-5, [138] 潘曹峰, 朱静. 基于单根纳米线的纳米燃料电池研究进展. 科学通报[J]. 2008, 53(21): 2671-2671, http://lib.cqvip.com/Qikan/Article/Detail?id=28809340.
[139] Zhang Lu, Zhang Xiao, Pan CaoFeng, Zhu Jing. Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES[J]. 2008, 51(11): 1838-1842, https://www.webofscience.com/wos/woscc/full-record/WOS:000260019200003.
[140] Zhang Lu, Pan CaoFeng, Zhu Jing. Growth mechanism and optimized parameters to synthesize Nafion-115 nanowire arrays with anodic aluminium oxide membranes as templates. CHINESE PHYSICS LETTERS[J]. 2008, 25(8): 3056-3058, https://www.webofscience.com/wos/woscc/full-record/WOS:000258018300086.
[141] 张鹭, 潘曹峰, 朱静. Growth Mechanism and Optimized Parameters to Synthesize Nation-115 Nanowire Arrays with Anodic Aluminium Oxide Membranes as Templates. 中国物理快报:英文版[J]. 2008, 25(8): 3056-3058, http://lib.cqvip.com/Qikan/Article/Detail?id=27934372.
[142] Pan, Caofeng, Wu, Hui, Wang, Cheng, Wang, Bo, Zhang, Lu, Cheng, Zhida, Hu, Ping, Pan, Wei, Zhou, Zhaoying, Yang, Xing, Zhu, Jing. Nanowire-based high performance "micro fuel cell": One nanowire, one fuel cell. ADVANCED MATERIALS[J]. 2008, 20(9): 1644-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000256263000008.
[143] Liu, Xiaohua, Zhang, Fan, Huang, Rui, Pan, Caofeng, Zhu, Jing. Capping modes in PVP-directed silver nanocrystal growth: Multi-twinned nanorods versus single-crystalline nano-hexapods. CRYSTAL GROWTH & DESIGN[J]. 2008, 8(6): 1916-1923, https://www.webofscience.com/wos/woscc/full-record/WOS:000256501000026.
[144] Zhang, Fan, Liu, Xiaohua, Pan, Caofeng, Zhu, Jing. Nano-porous anodic aluminium oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process. NANOTECHNOLOGY[J]. 2007, 18(34): https://www.webofscience.com/wos/woscc/full-record/WOS:000249278200007.
[145] Pan, Caofeng, Zhang, Lu, Zhu, Jing, Luo, Jun, Cheng, Zhida, Wang, Cheng. Surface decoration of anodic aluminium oxide in synthesis of Nafion (R)-115 nanowire arrays. NANOTECHNOLOGY[J]. 2007, 18(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000243836700009.
[146] Zhang, L, Pan, CF, Zhu, J, Wang, C. Synthesis and characterization of Nafion (R)-115 nanowire arrays. NANOTECHNOLOGY[J]. 2005, 16(10): 2242-2244, 

科研活动

   
参与会议
(1) Fiber-based hybrid nanogenerators for/as self-powered systems in bio-liquid,2011-12,Pan, C. F.; Zhu, J. and Wang, Z. L
(2) Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si1-xGex Wires: Fabrication, Characterization and Photovoltaic Application,2011-12,Pan, C. F.; Zhu, J. and Wang, Z. L.
(3) Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices,2011-12,Pan, C. F.; Zhu, J. and Wang, Z. L
(4) Nanofuel cells and nanomechanics,2009-01,Pan, C. F. and Zhu, J
(5) Nanofuel cells: Towards self-powered nanosystems,2009-01,Pan, C. F. and Zhu, J
(6) Nanofuel Cells: Towards Self-powered nanosystems,2009-01,Pan, C. F. and Zhu, J.,
(7) High Performance Nanowire-Based Nanofuel cells,,2008-01,Pan, C. F. and Zhu, J
(8) High performance nano fuel cell based on 1D nano proton transport channels,2007-01,Pan, C. F. and Zhu, J