基本信息
夏永高  男  博导  中国科学院宁波材料技术与工程研究所
电子邮件: xiayg@nimte.ac.cn
通信地址: 浙江省宁波市镇海区中官西路1219号
邮政编码: 315201

研究领域

目前重点研究动力电池绿色设计与回收再利用、新型电解质体系和新型储能器件等

招生信息

   
招生专业
080501-材料物理与化学
招生方向
新能源技术
锂离子电池材料

教育背景

2005-04--2008-03   日本佐贺大学   博士
2003-04--2005-03   日本佐贺大学   硕士
学历

研究生

学位

博士

专利与奖励

   
奖励信息
(1) 宁波市海外高层次人才优秀会员, 市地级, 2018
专利成果
[1] 夏永高, 邓龙平, 常凤真. 一种废旧电池正极材料回收稀溶液中提取锂的方法. CN: [[[CN111697282A]]], [[["2020-09-22"]]].

[2] 夏永高, 高洁, 汪辉. 一种利用废旧锂离子电池集流体铝箔回收正极材料中有价金属的方法. CN: CN114134329A, 2022-03-04.

[3] 石俊黎, 夏永高, 刘兆平. 一种复合隔膜及其制备方法. CN: CN114094279A, 2022-02-25.

[4] 夏永高, 熊建伟, 常凤真. 一种改善锂离子电池性能的电解液、其制备方法及锂离子电池. CN: CN114069046A, 2022-02-18.

[5] 夏永高. 一种新型锂电池. CN: CN114069042A, 2022-02-18.

[6] 夏永高, 程亚军, 左秀霞. 一种纳米化合金型负极材料及其制备方法. CN: CN112018368B, 2022-01-28.

[7] 夏永高, 程亚军, 左秀霞. 一种可脱碱金属离子材料及其制备方法. CN: CN112018330B, 2022-01-28.

[8] 程亚军, 徐隹军, 夏永高, 左秀霞. 一种可脱/嵌碱金属离子材料的制备方法. CN: CN113937248A, 2022-01-14.

[9] 高洁, 夏永高, 邓龙平, 王蒙蒙, 程亚军. 一种基于固固反应的离子交换装置. CN: CN215464473U, 2022-01-11.

[10] 高洁, 夏永高. 一种从磷酸铁锂电池提锂后的铁磷渣中回收磷酸铁的方法. CN: CN111646447B, 2021-12-14.

[11] 高洁, 夏永高. 一种从废旧磷酸铁锂电池中回收锂的方法、以及回收锂和磷酸铁的方法. CN: CN111675203B, 2021-12-14.

[12] 夏永高, 高洁, 申屠华剑. 一种退役锂离子电池正极材料的回收处理方法. CN: CN113314778A, 2021-08-27.

[13] 高洁, 王蒙蒙, 夏永高. 一种废旧锂电池回收再利用的方法. CN: CN113151680A, 2021-07-23.

[14] 夏永高, 王天桃. 一种微通道生产氟代碳酸乙烯酯的方法. CN: CN113121491A, 2021-07-16.

[15] 夏永高, 陈立鹏, 刘兆平. 一种锂离子电池正极材料及其制备方法和锂离子电池. CN: CN113036105A, 2021-06-25.

[16] 夏永高, 王梅梅, 程亚军. 一种集流体及其制备方法和应用. CN: CN111048788B, 2021-06-01.

[17] 夏永高, 高洁, 王蒙蒙. 一种退役电池的安全放电方法及湿法物理分选方法. CN: CN112201872A, 2021-01-08.

[18] 夏永高, 程亚军, 左秀霞. 可嵌入碱金属离子正极材料或金属单质的制备方法. CN: CN112018370A, 2020-12-01.

[19] 夏永高, 邓龙平, 常凤真. 一种废旧动力电池正极材料中锂的提取方法. CN: CN111675228A, 2020-09-18.

[20] 石俊黎, 夏永高, 刘兆平. 一种陶瓷复合隔膜及其制备方法. CN: CN110581247A, 2019-12-17.

[21] 夏永高, 左秀霞, 程亚军. 一种废旧动力电池电解液的无害化处理方法与系统. CN: CN110416654A, 2019-11-05.

[22] 夏永高, 左秀霞, 程亚军. 一种废旧动力电池电解液的无害化回收方法. CN: CN110380150A, 2019-10-25.

[23] 夏永高, 刘永川, 陈素晶, 苗小飞, 张祥昕, 方建辉, 王维, 冯文豆, 李伟, 陈远强. 一种柔性集流体及其制备方法和应用. CN: CN110380058A, 2019-10-25.

[24] 夏永高, 王梅梅, 程亚军. 一种集流体及其制备方法和应用. CN: CN110364739A, 2019-10-22.

[25] 夏永高, 王梅梅, 程亚军. 一种集流体及其制备方法和应用. CN: CN110364739A, 2019-10-22.

[26] 郭皓诚, 邱报, 夏永高. 一种锂离子电池正极材料的回收方法. CN: CN106099236B, 2019-09-24.

[27] 郭皓诚, 邱报, 夏永高, 刘兆平, 贾凯. 一种锂离子电池正极材料的回收方法. CN: CN106099236B, 2019-09-24.

[28] 程亚军, 姬青, 朱锦, 夏永高. 一种纳米二氧化铌/碳锂离子电池负极材料的制备方法. CN: CN110021744A, 2019-07-16.

[29] 裴晓英, 李志虎, 夏永高, 刘兆平. 一种锂离子电池负极材料、其制备方法及锂离子电池. CN: CN109786733A, 2019-05-21.

[30] 何盈, 石俊黎, 夏永高, 刘兆平, 许和伟. 一种锂金属二次电池用铜集流体、其制备方法及锂金属二次电池. CN: CN108649232A, 2018-10-12.

[31] 杨正东, 傅儒生, 夏永高, 刘兆平, 张可利. 一种锂离子电池负极材料、其制备方法及锂离子电池. CN: CN105742611B, 2018-09-21.

[32] 马丹丹, 夏永高, 石俊黎, 刘兆平. 一种离子液体聚合物复合固态电解质、其制备方法及锂离子电池. CN: CN108428931A, 2018-08-21.

[33] 沈成绪, 傅儒生, 夏永高, 刘兆平. 一种氧化硅碳复合负极材料、其制备方法及锂离子电池. CN: CN108306009A, 2018-07-20.

[34] 夏永高, 刘兆平. 一种正极材料、其制备方法及锂离子电池. CN: CN105375021B, 2018-07-06.

[35] 邱报, 夏永高, 刘兆平. 一种富锂氧化物正极材料及其制备方法以及一种锂离子电池. CN: CN107946571A, 2018-04-20.

[36] 杨光华, 夏永高, 刘兆平. 电解液与锂离子电池. CN: CN107808981A, 2018-03-16.

[37] 许和伟, 石俊黎, 夏永高, 刘兆平. 一种电解质及锂金属电池. CN: CN107732294A, 2018-02-23.

[38] 傅儒生, 沈成绪, 夏永高, 刘兆平. 一种表面功能化碳材料及其制备方法以及应用. CN: CN107651663A, 2018-02-02.

[39] 夏兰, 夏永高, 刘兆平, 胡华胜. 一种电解液. CN: CN107634264A, 2018-01-26.

[40] 沈成绪, 傅儒生, 夏永高, 刘兆平. 氧化硅基碳复合负极材料、其制备方法及锂离子电池. CN: CN107317006A, 2017-11-03.

[41] 夏永高, 陈立鹏, 刘兆平. 一种锂离子电池正极材料及其制备方法和锂离子电池. CN: CN104733730B, 2017-10-03.

[42] 许和伟, 夏永高, 刘兆平. 一种电解质及锂离子电池. CN: CN107180998A, 2017-09-19.

[43] 高洁, 王蒙蒙, 夏永高. 一种废旧锂电池回收再利用的方法. CN: CN107180991A, 2017-09-19.

[44] 裴晓英, 李志虎, 夏永高, 刘兆平. 锂离子电池负极材料及其制备方法、锂离子电池. CN: CN106935816A, 2017-07-07.

[45] 顾庆文, 赛喜雅勒图, 夏永高, 刘兆平. 一种镍钴锰前驱体及其制备方法. CN: CN106784784A, 2017-05-31.

[46] 秦来芬, 夏永高, 刘兆平. 一种单相正极材料、其制备方法及锂离子电池. CN: CN106784808A, 2017-05-31.

[47] 夏永高, 邱报, 刘兆平. 富锂锰基正极材料及其制备方法. CN: CN104466157B, 2017-04-12.

[48] 刘兆平, 夏永高, 陈立鹏. 一种锂离子电池正极材料制备方法. CN: CN106450244A, 2017-02-22.

[49] 贾凯, 邱报, 夏永高, 刘兆平, 郭皓诚. 锂离子电池电极改性材料、其制备方法及锂离子电池. CN: CN106450276A, 2017-02-22.

[50] 郭皓诚, 邱报, 夏永高. 一种锂离子电池正极材料的回收方法. CN: CN106099236A, 2016-11-09.

[51] 张可利, 傅儒生, 夏永高, 刘兆平. 一种多孔石墨烯/硅复合材料、其制备方法及锂离子电池. CN: CN106099061A, 2016-11-09.

[52] 傅儒生, 杨正东, 张可利, 夏永高, 刘兆平. 一种硅氧烯材料、硅基氧化物的制备方法及负极材料. CN: CN106058232A, 2016-10-26.

[53] 骆浩, 杨光华, 夏永高, 刘兆平. 一种电池浆料、电池极片及其制备方法. CN: CN106025175A, 2016-10-12.

[54] 杨光华, 夏永高, 刘兆平, 石俊黎, 夏兰. 一种电解液以及一种锂离子电池. CN: CN105742711A, 2016-07-06.

[55] 张可利, 杨正东, 夏永高, 刘兆平. 一种锂离子电池负极材料、其制备方法及锂离子电池. CN: CN105742611A, 2016-07-06.

[56] 骆浩, 夏永高, 刘兆平. 一种二氟磷酸盐的制备方法. CN: CN105731412A, 2016-07-06.

[57] 夏兰, 夏永高, 刘兆平. 一种非水电解液和一种锂离子电池. CN: CN105720304A, 2016-06-29.

[58] 石俊黎, 夏永高, 刘兆平, 杨光华. 一种电解液以及锂离子电池. CN: CN105552430A, 2016-05-04.

[59] 骆浩, 夏永高, 刘兆平. 一种非水电解液及其制备方法以及一种锂二次电池. CN: CN105428720A, 2016-03-23.

[60] 夏永高, 刘兆平. 一种正极材料、其制备方法及锂离子电池. CN: CN105375021A, 2016-03-02.

[61] 夏永高, 石俊黎, 刘兆平. 陶瓷隔膜及其制备方法. CN: CN105206779A, 2015-12-30.

[62] 刘兆平, 夏永高, 陈立鹏. 锂离子电池正极材料及其制备方法. CN: CN105185974A, 2015-12-23.

[63] 潘凌超, 夏永高, 刘兆平. 一种富锂锰基正极材料、其制备方法及锂离子电池. CN: CN104966831A, 2015-10-07.

[64] 刘兆平, 夏永高, 陈立鹏. 一种磷酸锰锂正极材料及其制备方法. CN: CN103413943B, 2015-06-17.

[65] 石俊黎, 夏永高, 刘兆平. 一种复合隔膜及其制备方法. CN: CN104538577A, 2015-04-22.

[66] 夏永高, 邱报, 刘兆平. 富锂锰基正极材料及其制备方法. CN: CN104466157A, 2015-03-25.

[67] 赛喜雅勒图, 刘兆平, 夏永高. 一种高电压镍锰酸锂正极材料及其制备方法. CN: CN102969498B, 2015-03-11.

[68] 石俊黎, 夏永高, 刘兆平. 一种多孔隔膜、其制备方法及锂离子电池. CN: CN104051687A, 2014-09-17.

[69] 夏兰, 夏永高, 刘兆平. 非水电解液与锂离子电池. CN: CN103972588A, 2014-08-06.

[70] 夏兰, 夏永高, 刘兆平. 一种非水电解液和锂离子电池. CN: CN103928709A, 2014-07-16.

[71] 韩琪, 张一鸣, 刘兆平, 袁国霞, 夏永高. 一种两相反应材料和单相反应材料混合的放电曲线计算方法. CN: CN103792497A, 2014-05-14.

[72] 石俊黎, 夏永高, 刘兆平. 一种隔膜及其制备方法. CN: CN103779527A, 2014-05-07.

[73] 夏兰, 夏永高, 刘兆平, 胡华胜. 一种电解液. CN: CN103762380A, 2014-04-30.

[74] 魏臻, 夏永高, 刘兆平. 一种以富锂锰基固溶体材料为正极的电池的应用方法. CN: CN103647115A, 2014-03-19.

[75] 刘元状, 夏永高, 刘兆平. 纳米片状MnO 2 -石墨烯复合材料、其制备方法及超级电容器. CN: CN103641174A, 2014-03-19.

[76] 刘元状, 夏永高, 刘兆平. 纳米片状MnO 2 -石墨烯复合材料、其制备方法及超级电容器. 中国: CN103641174A, 2014-03-19.

[77] 石俊黎, 夏永高, 刘兆平, 胡华胜. 一种隔膜及其制备方法. CN: CN103618058A, 2014-03-05.

[78] 夏永高, 王梅梅, 程亚军. 一种柔性集流体及其制备方法和应用. CN: CN103426634A, 2013-12-04.

[79] 李志虎, 裴晓英, 夏永高, 刘兆平. 锂离子电池负极材料及其制备方法. 中国: CN103346324A, 2013-10-09.

[80] 李志虎",null,"夏永高. 锂离子电池负极材料及其制备方法. CN: CN103346324A, 2013-10-09.

[81] 夏永高, 刘兆平, 赛喜雅勒图. 锂离子电池正极材料、其制备方法及锂离子电池. CN: CN103258994A, 2013-08-21.

[82] 张茜, 刘娟娟, 夏永高, 刘兆平. 一种富锂锰基正极材料及其制备方法. 中国: CN103137963A, 2013-06-05.

[83] 张茜, 刘娟娟, 夏永高, 刘兆平. 一种富锂锰基正极材料及其制备方法. CN: CN103137963A, 2013-06-05.

[84] 刘兆平, 夏永高, 赛喜雅勒图. 锂离子电池正极材料及其制备方法. CN: CN102983334A, 2013-03-20.

[85] 赛喜雅勒图, 刘兆平, 夏永高. 一种高电压镍锰酸锂正极材料及其制备方法. CN: CN102969498A, 2013-03-13.

[86] 夏永高, 刘兆平, 陈立鹏, 张明浩. 一种磷酸锰锂正极材料及其制备方法. CN: CN102931405A, 2013-02-13.

[87] 夏永高, 刘兆平, 袁国霞. 镍钴锰氢氧化物前驱体及其制备方法. CN: CN102916177A, 2013-02-06.

[88] 夏永高, 刘兆平, 陈立鹏. 一种锂离子电池正极材料、其制备方法和锂离子电池. CN: CN102856552A, 2013-01-02.

[89] 刘兆平, 夏永高, 陈立鹏. 一种锂离子电池正极材料的制备方法. CN: CN101834287B, 2012-12-26.

[90] 刘兆平, 夏永高, 赛喜雅勒图. 改性锰酸锂正极材料及其制备方法. CN: CN102694167A, 2012-09-26.

[91] 夏永高, 刘兆平, 赛喜雅勒图. 尖晶石镍锰基氧化物正极材料及其制备方法. CN: CN102683668A, 2012-09-19.

[92] 夏永高, 刘兆平, 赛喜雅勒图. 一种锂锰铝氧正极材料及其制备方法. CN: CN102683667A, 2012-09-19.

[93] 刘兆平, 夏永高, 周旭峰. 无机纳米粒子合成用水热反应装置. CN: CN102671577A, 2012-09-19.

[94] 刘兆平, 夏永高. 一种锂离子电池正极材料制备方法. CN: CN102664259A, 2012-09-12.

[95] 刘兆平, 夏永高, 赛喜雅勒图. 一种包覆改性的锰酸锂正极材料及其制备方法. CN: CN102569807A, 2012-07-11.

[96] 刘兆平, 张明浩, 夏永高, 袁国霞. 基于过渡金属碳酸盐前驱体的锂离子电池正极材料制备方法. CN: CN102299324A, 2011-12-28.

[97] 夏永高, 邱报, 刘兆平. 富锂锰基正极材料及其制备方法. CN: CN101694876A, 2010-04-14.

出版信息

   
发表论文
[1] Yuan, Jiashu, Shi, Xiaotang, Qiu, Qianyuan, Yao, Penghui, Xia, Yonggao, Zhao, Yicheng, Li, Yongdan. Ion Selective Bifunctional Metal-Organic Framework-Based Membrane for Lithium Metal-Based Nonaqueous Redox Flow Battery. ACS APPLIED ENERGY MATERIALS[J]. 2023, 6(1): 416-423, http://dx.doi.org/10.1021/acsaem.2c03324.
[2] Jia, Jintao, Deng, Longping, Shentu, Huajian, Wang, Mengmeng, Cheng, YaJun, Zuo, Xiuxia, Gao, Jie, Xia, Yonggao. Total Component Recovery of Spent LiFePO4 Cathode Powder: A Leaching-Adsorption Process. ENERGY & FUELS[J]. 2023, 37(9): 6834-6840, http://dx.doi.org/10.1021/acs.energyfuels.3c00431.
[3] Cao, Longhao, Wang, Hui, Guo, Ziyin, Zhang, Jing, Zhang, Xiaosong, Peng, Cancan, Yu, Jingxiong, Cheng, YaJun, Xia, Yonggao. From metal to cathode material: in situ formation of LiCoO2 with enhanced cycling performance and suppressed phase transition. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2023, 11(18): 9913-9921, http://dx.doi.org/10.1039/d3ta00999h.
[4] Xiao, Yiyao, Shi, Xiaotang, Zheng, Tianle, Yue, Ye, Shi, Siqi, Cheng, YaJun, Xia, Yonggao. Dual Role of Bis(borate) Additive in Electrode/Electrolyte Interface Layer Construction for High-Voltage NCM 523 Cathode. ACS APPLIED ENERGY MATERIALS[J]. 2023, 6(9): 4817-4824, http://dx.doi.org/10.1021/acsaem.3c00250.
[5] Wang, Hui, Cao, Longhao, Wang, Mengmeng, Liu, Bin, Deng, Longping, Li, Guohua, Cheng, YaJun, Gao, Jie, Xia, Yonggao. Green and Low-Cost Approach for Recovering Valuable Metals from Spent Lithium-Ion Batteries. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. 2023, http://dx.doi.org/10.1021/acs.iecr.2c02802.
[6] Wang, Mengyuan, Zhang, Xiaosong, Guo, Ziyin, Chen, Chunhua, Yuan, Jiashu, Li, Yongdan, Xia, Yonggao, Cheng, YaJun. Two-step carbon coating onto nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode reduces adverse phase transition and enhances electrochemical performance. ELECTROCHIMICA ACTA[J]. 2023, 454: http://dx.doi.org/10.1016/j.electacta.2023.142339.
[7] Yang, Ming, Chen, Peng, Li, Jiapei, Qi, Ruoxuan, Huang, Yudai, MuellerBuschbaum, Peter, Cheng, YaJun, Guo, Kunkun, Xia, Yonggao. Poly(acrylic acid) locally enriched in slurry enhances the electrochemical performance of the SiOx lithium-ion battery anode. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2023, 11(12): 6205-6216, http://dx.doi.org/10.1039/d2ta09840g.
[8] Song, Jingbo, Liao, Kaisi, Si, Jia, Zhao, Chuanli, Wang, Junping, Zhou, Mingjiong, Liang, Hongze, Gong, Jing, Cheng, YaJun, Gao, Jie, Xia, Yonggao. Phosphonate-Functionalized Ionic Liquid Gel Polymer Electrolyte with High Safety for Dendrite-Free Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2023, 15(2): 2901-2910, http://dx.doi.org/10.1021/acsami.2c18298.
[9] Yuan, Jiashu, Shi, Xiaotang, Qiu, Qianyuan, Yao, Penghui, Xia, Yonggao, Zhao, Yicheng, Li, Yongdan. Ion Selective Bifunctional Metal-Organic Framework-Based Membrane for Lithium Metal-Based Nonaqueous Redox Flow Battery. ACS APPLIED ENERGY MATERIALS. 2022, [10] Zhu, Bingying, Zheng, Tianle, Xiong, Jianwei, Shi, Xiaotang, Cheng, YaJun, Xia, Yonggao. A Lithium-Ion Battery Cathode with Enhanced Wettability toward an Electrolyte Fabricated by a Fast Light Curing of Photoactive Slurry. ENERGY & FUELS[J]. 2022, 36(6): 3313-3318, http://dx.doi.org/10.1021/acs.energyfuels.1c04441.
[11] Ziyin Guo, Xiaosong Zhang, Mengyuan Wang, Siqi Shi, YaJun Cheng, Yonggao Xia. Protective and ion conductive: High-Rate Ni-Rich cathode with enhanced cyclic stability via One-Step bifunctional dual-layer coating. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 431: [12] Liu Laihao, Zuo, Xiuxia, Cheng Yajun, Xia Yonggao. In Situ Synthesis and Dual Functionalization of Nano Silicon Enabled by a Semisolid Lithium Rechargeable Flow Battery. Acs Applied Materials & Interfaces[J]. 2022, [13] Wang, Xiaoyan, Cheng, YaJun, Liang, Suzhe, Ji, Qing, Zhu, Jin, Xia, Yonggao. Ultrafine SnO2/Sn Nanoparticles Embedded into an In Situ Generated Meso-/Macroporous Carbon Matrix with a Tunable Pore Size. LANGMUIR[J]. 2022, 38(5): 1689-1697, http://dx.doi.org/10.1021/acs.langmuir.1c02726.
[14] Liu, Xiang, Wang, Mengmeng, Deng, Longping, Cheng, YaJun, Gao, Jie, Xia, Yonggao. Direct Regeneration of Spent Lithium Iron Phosphate via a Low-Temperature Molten Salt Process Coupled with a Reductive Environment. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2022, 61(11): 3831-3839, http://dx.doi.org/10.1021/acs.iecr.1c05034.
[15] Qi, Ruoxuan, Yang, Chao, Ma, Liujia, Fan, Xiaoying, Wu, Qiaoyun, Wang, Chao, Cheng, YaJun, Guo, Kunkun, Gao, Yanfeng, Xia, Yonggao. Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. JOURNALOFMATERIALSCHEMISTRYA[J]. 2022, 10(14): 8047-8058, http://dx.doi.org/10.1039/d1ta10134j.
[16] Liang, Suzhe, Cheng, YaJun, Wang, Xiaoyan, Xu, Zhuijun, Ma, Liujia, Xu, Hewei, Ji, Qing, Zuo, Xiuxia, MuellerBuschbaum, Peter, Xia, Yonggao. Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes. NANOSCALEADVANCES[J]. 2021, 3(7): 1942-1953, https://www.webofscience.com/wos/woscc/full-record/WOS:000637218000013.
[17] Wan, Juanyong, Wen, Rongjiang, Xia, Yonggao, Dai, Mingzhi, Huang, Huihui, Xue, Lingwei, Zhang, Zhiguo, Fang, Junfeng, Hui, Kwun Nam, Fan, Xi. All annealing-free solution-processed highly flexible organic solar cells. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(9): 5425-5433, http://dx.doi.org/10.1039/d0ta11831a.
[18] Zhang, Pan, Li, Rui, Huang, Jian, Liu, Boyu, Zhou, Mingjiong, Wen, Bizheng, Xia, Yonggao, Okada, Shigeto. Flexible poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte for high-performance lithium-ion batteries. RSC ADVANCES[J]. 2021, 11(20): 11943-11951, https://www.webofscience.com/wos/woscc/full-record/WOS:000634931200014.
[19] Xiong, Jianwei, Zheng, Tianle, Cheng, YaJun, Sun, Jialong, Cao, Ruiguo, Xia, Yonggao. Sulfur is a New High-Performance Additive toward High-Voltage LiNi0.5Co0.2Mn0.3O2 Cathode: Tiny Amount, Huge Impact. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(16): 18648-18657, http://dx.doi.org/10.1021/acsami.1c00391.
[20] Zheng, Tianle, Xiong, Jianwei, Shi, Xiaotang, Zhu, Bingying, Cheng, YaJun, Zhao, Hongbin, Xia, Yonggao. Cocktail therapy towards high temperature/high voltage lithium metal battery via solvation sheath structure tuning. ENERGY STORAGE MATERIALS[J]. 2021, 38: 599-608, http://dx.doi.org/10.1016/j.ensm.2021.04.002.
[21] Xiuxia Zuo, YaJun Cheng, Jin Zhu, Jie Gao, Yonggao Xia. Porous silicon derived from 130nm Stöber silica as lithium‐ion battery anode. NANO SELECT[J]. 2021, 2(8): 1554-1565, [22] Longping Deng, Zhuijun Xu, Mengmeng Wang, Huajian Shentu, Xiang Liu, Jianwei Xiong, Ya-Jun Cheng, Chao Wang, Mingjiong Zhou, 高洁, 夏永高. CO2 treatment enables non-hazardous, reliable, and efficacious recovery of spent Li(Ni0.5Co0.2Mn0.3)O2 cathodes. Green Chemistry[J]. 2021, 24(2): 779-789, [23] Shi, Xiaotang, Zheng, Tianle, Xiong, Jianwei, Zhu, Bingying, Cheng, YaJun, Xia, Yonggao. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(48): 57107-57117, http://dx.doi.org/10.1021/acsami.1c15690.
[24] Zheng, Tianle, Xiong, Jianwei, Zhu, Bingying, Shi, Xiaotang, Cheng, YaJun, Zhao, Hongbin, Xia, Yonggao. From-20 degrees C to 150 degrees C: a lithium secondary battery with a wide temperature window obtained via manipulated competitive decomposition in electrolyte solution. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(14): 9307-9318, http://dx.doi.org/10.1039/d1ta00895a.
[25] Zheng, Tianle, Xiong, Jianwei, Zhu, Bingying, Shi, Xiaotang, Cheng, YaJun, Zhao, Hongbin, Xia, Yonggao. From-20 degrees C to 150 degrees C: a lithium secondary battery with a wide temperature window obtained via manipulated competitive decomposition in electrolyte solution dagger. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(14): 9307-9318, http://dx.doi.org/10.1039/d1ta00895a.
[26] 姬青, 徐隹军, 杲祥文, 程亚军, 王晓艳, 左秀霞, 陈政, 胡斌杰, 朱锦, Peter, GBruce, 夏永高. 通过构筑嵌覆型碳结构提升Nb_(2)O_(5)的储锂性能. 中国科学:材料科学(英文版)[J]. 2021, 64(5): 1071-1086, http://lib.cqvip.com/Qikan/Article/Detail?id=7104326663.
[27] Ban, Jianzhen, Wang, Xiaoyan, Yin, Shanshan, Cheng, YaJun, Ji, Lianmin, MuellerBuschbaum, Peter, Gao, Jie, Xia, Yonggao. Super-Small TiO2 Nanoparticles Homogeneously Embedded in Mesoporous Carbon Matrix Based on Dental Methacrylates and KOH Activation. CHEMISTRYSELECT[J]. 2021, 6(7): 1508-1518, http://dx.doi.org/10.1002/slct.202004770.
[28] Ji, Qing, Xu, Zhuijun, Gao, Xiangwen, Cheng, YaJun, Wan, Xiaoyan, Zuo, Xiuxia, Chen, George Z, Hu, Binjie, Zhu, Jin, Bruce, Peter G, Xia, Yonggao. Carbon-emcoating architecture boosts lithium storage of Nb2O5. SCIENCE CHINA-MATERIALS[J]. 2021, 64(5): 1071-1086, http://dx.doi.org/10.1007/s40843-020-1532-0.
[29] Xie, Shuang, Ji, Qing, Xia, Yonggao, Fang, Kai, Wang, Xiaoyan, Zuo, Xiuxia, Cheng, YaJun. Mutual Performance Enhancement within Dual N-doped TiO2/Si/C Nanohybrid Lithium-Ion Battery Anode. CHEMISTRYSELECT[J]. 2021, 6(2): 141-153, http://dx.doi.org/10.1002/slct.202004054.
[30] Shentu, Huajian, Xiang, Bo, Cheng, YaJun, Dong, Tao, Gao, Jie, Xia, Yonggao. A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. ENVIRONMENTAL TECHNOLOGY & INNOVATION[J]. 2021, 23: http://dx.doi.org/10.1016/j.eti.2021.101569.
[31] Zuo, Xiuxia, Wen, Yi, Qiu, Yike, Cheng, YaJun, Yin, Shanshan, Ji, Qing, You, Zhong, Zhu, Jin, MuellerBuschbaum, Peter, Ma, Lifeng, Bruce, Peter G, Xia, Yonggao. Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(39): 43785-43797, https://www.webofscience.com/wos/woscc/full-record/WOS:000577111700045.
[32] Wen, Rongjiang, Xia, Yonggao, Huang, Huihui, Wen, Shuangchun, Wang, Jinzhao, Fang, JunFeng, Fan, Xi. Boosted efficiency of conductive metal oxide-free pervoskite solar cells using poly(3-(4-methylamincarboxylbutyl)thiophene) buffer layers. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2020, 53(28): https://www.webofscience.com/wos/woscc/full-record/WOS:000536087800001.
[33] Liang, Suzhe, Cheng, YaJun, Zhu, Jin, Xia, Yonggao, MuellerBuschbaum, Peter. A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes. SMALL METHODS[J]. 2020, 4(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000531353100001.
[34] Wang, Xiaoyan, Cheng, YaJun, Ji, Qing, Liang, Suzhe, Ma, Liujia, Xu, Zhuijun, Zuo, Xiuxia, Meng, JianQiang, Zhu, Jin, MuellerBuschbaum, Peter, Xia, Yonggao. In Situ Incorporation of Super-Small Metallic High Capacity Nanoparticles and Mesoporous Structures for High-Performance TiO2/SnO2/Sn/Carbon Nanohybrid Lithium-Ion Battery Anodes. ENERGY TECHNOLOGY[J]. 2020, 8(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000527408500001.
[35] Ma, Liujia, Meng, Jianqiang, Pan, Ying, Cheng, YaJun, Ji, Qing, Zuo, Xiuxia, Wang, Xiaoyan, Zhu, Jin, Xia, Yonggao. Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. LANGMUIR[J]. 2020, 36(8): 2003-2011, http://dx.doi.org/10.1021/acs.langmuir.9b03497.
[36] Fan, Xi, Wen, Rongjiang, Xia, Yonggao, Wang, Jinzhao, Liu, Xiaohui, Huang, Huihui, Li, Yuan, Zhu, Weiya, Cheng, Yajun, Ma, Liujia, Fang, Junfeng, Tsai, Hsinhan, Nie, Wanyi. Vacuum-Free, All-Solution, and All-Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layer-by-Layer Codoped Polymeric Electrodes. SOLAR RRL[J]. 2020, 4(6): http://dx.doi.org/10.1002/solr.201900543.
[37] Ma, Liujia, Meng, JianQiang, Cheng, YaJun, Gao, Jie, Wang, Xiaoyan, Ji, Qing, Wang, Meimei, Zuo, Xiuxia, Zhu, Jin, Xia, Yonggao. Epoxy Resin Enables Facile Scalable Synthesis of CuO/C Nanohybrid Lithium-Ion Battery Anode with Enhanced Electrochemical Performance. CHEMISTRYSELECT[J]. 2020, 5(18): 5479-5487, https://www.webofscience.com/wos/woscc/full-record/WOS:000532796500015.
[38] Ma, Liujia, Meng, JianQiang, Cheng, YaJun, Ji, Qing, Zuo, Xiuxia, Wang, Xiaoyan, Zhu, Jin, Xia, Yonggao. Poly(siloxane imide) Binder for Silicon-Based Lithium-Ion Battery Anodes via Rigidness/Softness Coupling. CHEMISTRY-AN ASIAN JOURNAL[J]. 2020, 15(17): 2674-2680, https://www.webofscience.com/wos/woscc/full-record/WOS:000548861400001.
[39] Guo, Haocheng, Wei, Zhen, Jia, Kai, Qiu, Bao, Yin, Chong, Meng, Fanqi, Zhang, Qinghua, Gu, Lin, Han, Shaojie, Liu, Yan, Zhao, Hu, Jiang, Wei, Cui, Hongfu, Xia, Yonggao, Liu, Zhaoping. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. ENERGY STORAGE MATERIALS[J]. 2019, 16: 220-227, http://dx.doi.org/10.1016/j.ensm.2018.05.022.
[40] Fan, Xi, Nie, Wanyi, Tsai, Hsinhan, Wang, Naixiang, Huang, Huihui, Cheng, Yajun, Wen, Rongjiang, Ma, Liujia, Yan, Feng, Xia, Yonggao. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. ADVANCED SCIENCE[J]. 2019, 6(19): https://doaj.org/article/f440b5c99d504a8d81e1245fc063ffd7.
[41] Wang, Xiaoyan, Zhao, Dong, Wang, Chao, Xia, Yonggao, Jiang, Wenshuai, Xia, Senlin, Yin, Shanshan, Zuo, Xiuxia, Metwalli, Ezzeldin, Xiao, Ying, Sun, Zaicheng, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Role of Nickel Nanoparticles in High-Performance TiO2/Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes. CHEMISTRY-AN ASIAN JOURNAL[J]. 2019, 14(9): 1557-1569, https://www.webofscience.com/wos/woscc/full-record/WOS:000470179400031.
[42] Zhang, Guohua, Qiu, Bao, Xia, Yonggao, Wang, Xiaolan, Gu, Qingwen, Jiang, Yabei, He, Zhilong, Liu, Zhaoping. Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. JOURNAL OF POWER SOURCES[J]. 2019, 420: 29-37, http://dx.doi.org/10.1016/j.jpowsour.2019.02.086.
[43] Cui, Hongfu, Yin, Chong, Xia, Yonggao, Wei, Chenggang, Jiang, Wei, Sun, Jie, Qiu, Bao, Zhu, Mingyuan, Liu, Zhaoping. Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance. CERAMICS INTERNATIONAL[J]. 2019, 45(12): 15097-15107, http://dx.doi.org/10.1016/j.ceramint.2019.04.250.
[44] Jiang, Wei, Yin, Chong, Xia, Yonggao, Qiu, Bao, Guo, Haocheng, Cui, Hongfu, Hu, Fang, Liu, Zhaoping. Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(15): 14023-14034, https://www.webofscience.com/wos/woscc/full-record/WOS:000465189000021.
[45] Wang, Xiaoyan, Xia, Yonggao, Zuo, Xiuxia, Schaper, Simon J, Yin, Shanshan, Ji, Qing, Liang, Suzhe, Yang, Zhaohui, Xia, Senlin, Xiao, Ying, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Synergistic effects from super-small sized TiO2 and SiOx nanoparticles within TiO2/SiOx/carbon nanohybrid lithium-ion battery anode. CERAMICS INTERNATIONAL[J]. 2019, 45(11): 14327-14337, http://dx.doi.org/10.1016/j.ceramint.2019.04.147.
[46] Zuo, Xiuxia, Wang, Xiaoyan, Xia, Yonggao, Yin, Shanshan, Ji, Qing, Yang, Zhaohui, Wang, Meimei, Zheng, Xiaofang, Qiu, Bao, Liu, Zhaoping, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. JOURNAL OF POWER SOURCES[J]. 2019, 412: 93-104, http://dx.doi.org/10.1016/j.jpowsour.2018.11.039.
[47] Ji, Qing, Gao, Xiangwen, Zhang, Qiuju, Jin, Liyu, Wang, Da, Xia, Yonggao, Yin, Shanshan, Xia, Senlin, Hohn, Nuri, Zuo, Xiuxia, Wang, Xiaoyan, Xie, Shuang, Xu, Zhuijun, Ma, Liujia, Chen, Liang, Chen, George Z, Zhu, Jin, Hu, Binjie, MuellerBuschbaum, Peter, Bruce, Peter G, Cheng, YaJun. Dental Resin Monomer Enables Unique NbO2/Carbon Lithium-Ion Battery Negative Electrode with Exceptional Performance. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(43): http://dx.doi.org/10.1002/adfm.201904961.
[48] Wang, Xiaoyan, Ma, Liujia, Ji, Qing, Meng, JianQiang, Liang, Suzhe, Xu, Zhuijun, Wang, Meimei, Zuo, Xiuxia, Xiao, Ying, Zhu, Jin, Xia, Yonggao, MuellerBuschbaum, Peter, Cheng, YaJun. MnO/Metal/Carbon Nanohybrid Lithium-Ion Battery Anode With Enhanced Electrochemical Performance: Universal Facile Scalable Synthesis and Fundamental Understanding. ADVANCED MATERIALS INTERFACES[J]. 2019, 6(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000477979500003.
[49] Dai, Wenhui, Dong, Ning, Xia, Yonggao, Chen, Shiqing, Luo, Hao, Liu, Yuewen, Liu, Zhaoping. Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries. ELECTROCHIMICA ACTA[J]. 2019, 320: http://dx.doi.org/10.1016/j.electacta.2019.134633.
[50] Shen, Chengxu, Fu, Rusheng, Guo, Haocheng, Wu, Yongkang, Fan, Chongzhao, Xia, Yonggao, Liu, Zhaoping. Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2019, 783: 128-135, http://dx.doi.org/10.1016/j.jallcom.2018.12.291.
[51] Dong, Ning, Luo, Hao, Xia, Yonggao, Guo, Haocheng, Fu, Rusheng, Liu, Zhaoping. Confining Al-Li alloys between pre-constructed conductive buffers for advanced aluminum anodes. CHEMICAL COMMUNICATIONS[J]. 2019, 55(16): 2352-2355, [52] 赛喜雅勒图, 王雪莹, 顾庆文, 夏永高, 刘兆平, 何杰. 非化学计量比调控高电压尖晶石正极材料电化学性能研究. 无机材料学报[J]. 2018, 33(9): 993-1000, http://lib.cqvip.com/Qikan/Article/Detail?id=676387520.
[53] Dong, Ning, Yang, Guanghua, Luo, Hao, Xu, Hewei, Xia, Yonggao, Liu, Zhaoping. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. JOURNAL OF POWER SOURCES[J]. 2018, 400: 449-456, http://dx.doi.org/10.1016/j.jpowsour.2018.08.059.
[54] 张小颂, 夏永高. 锂离子电池电解液的安全性研究进展. 储能科学与技术[J]. 2018, 7(6): 1016-1029, http://lib.cqvip.com/Qikan/Article/Detail?id=676562314.
[55] Shen, Chengxu, Fu, Rusheng, Xia, Yonggao, Liu, Zhaoping. New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide. RSC ADVANCES[J]. 2018, 8(26): 14473-14478, http://ir.nimte.ac.cn/handle/174433/16910.
[56] 杨光华, 夏兰, 夏永高, 刘丽, 刘兆平. 锂离子电池中SEI膜的研究进展. 电源技术[J]. 2018, 42(12): 1918-1921,1932, http://www.corc.org.cn/handle/1471x/2168043.
[57] Lee SaiXi, Wang XueYin, Gu QingWen, Xia YongGao, Liu ZhaoPing, He Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials. JOURNAL OF INORGANIC MATERIALS[J]. 2018, 33(9): 993-1000, http://ir.nimte.ac.cn/handle/174433/17190.
[58] Yin, Shanshan, Zhao, Dong, Ji, Qing, Xia, Yonggao, Xia, Senlin, Wang, Xinming, Wang, Meimei, Ban, Jianzhen, Zhang, Yi, Metwalli, Ezzeldin, Wang, Xiaoyan, Xiao, Ying, Zuo, Xiuxia, Xie, Shuang, Fang, Kai, Liang, Suzhe, Zheng, Luyao, Qiu, Bao, Yang, Zhaohui, Lin, Yichao, Chen, Liang, Wang, Cundong, Liu, Zhaoping, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS NANO[J]. 2018, 12(1): 861-875, http://ir.nimte.ac.cn/handle/174433/16925.
[59] Xu, Hewei, Shi, Junli, Hu, Guosheng, He, Ying, Xia, Yonggao, Yin, Shanshan, Liu, Zhaoping. Hybrid electrolytes incorporated with dandelion-like silane Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2018, 391: 113-119, http://dx.doi.org/10.1016/j.jpowsour.2018.04.060.
[60] Liang, SuZhe, Wang, XiaoYan, Xia, YongGao, Xia, SenLin, Metwalli, Ezzeldin, Qiu, Bao, Ji, Qing, Yin, ShanShan, Xie, Shuang, Fang, Kai, Zheng, LuYao, Wang, MeiMei, Zuo, XiuXia, Li, RuJiang, Liu, ZhaoPing, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Scalable Synthesis of Hierarchical Antimony/Carbon Micro-/Nanohybrid Lithium/Sodium-Ion Battery Anodes Based on Dimethacrylate Monomer. ACTA METALLURGICA SINICA-ENGLISH LETTERS[J]. 2018, 31(9): 910-922, http://lib.cqvip.com/Qikan/Article/Detail?id=676140748.
[61] Guo, Haocheng, Jia, Kai, Han, Shaojie, Zhao, Hu, Qiu, Bao, Xia, Yonggao, Liu, Zhaoping. Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithium-Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances. ADVANCED MATERIALS INTERFACES[J]. 2018, 5(11): http://ir.nimte.ac.cn/handle/174433/17405.
[62] Zheng, Luyao, Wang, Xiaoyan, Xia, Yonggao, Xia, Senlin, Metwalli, Ezzeldin, Qiu, Bao, Ji, Qing, Yin, Shanshan, Xie, Shuang, Fang, Kai, Liang, Suzhe, Wang, Meimei, Zuo, Xiuxia, Xiao, Ying, Liu, Zhaoping, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Scalable in Situ Synthesis of Li4Ti5O12/Carbon Nanohybrid with Supersmall Li4Ti5O12 Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(3): 2591-2602, http://ir.nimte.ac.cn/handle/174433/16862.
[63] Fu, Rusheng, Chang, Zhenzhen, Shen, Chengxu, Guo, Haocheng, Huang, Heran, Xia, Yonggao, Liu, Zhaoping. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. ELECTROCHIMICA ACTA[J]. 2018, 260: 430-438, http://dx.doi.org/10.1016/j.electacta.2017.12.043.
[64] 吴永康, 傅儒生, 刘兆平, 夏永高, 邵光杰. 锂离子电池硅氧化物负极材料的研究进展. 硅酸盐学报[J]. 2018, 46(11): 1645-1652, http://lib.cqvip.com/Qikan/Article/Detail?id=676884166.
[65] Yin, Shanshan, Ji, Qing, Zuo, Xiuxia, Xie, Shuang, Fang, Kai, Xia, Yonggao, Li, Jinlong, Qiu, Bao, Wang, Meimei, Ban, Jianzhen, Wang, Xiaoyan, Zhang, Yi, Xiao, Ying, Zheng, Luyao, Liang, Suzhe, Liu, Zhaoping, Wang, Cundong, Cheng, YaJun. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY[J]. 2018, 34(10): 1902-1911, http://lib.cqvip.com/Qikan/Article/Detail?id=676492639.
[66] Zuo, Xiuxia, Xia, Yonggao, Ji, Qing, Gao, Xiang, Yin, Shanshan, Wang, Meimei, Wang, Xiaoyan, Qiu, Bao, Wei, Anxiang, Sun, Zaicheng, Liu, Zhaoping, Zhu, Jin, Cheng, YaJun. Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from OD Silica Nanoparticles. ACS NANO[J]. 2017, 11(1): 889-899, http://ir.nimte.ac.cn/handle/174433/14108.
[67] Li, Dan, Shi, Dingqin, Xia, Yonggao, Qiao, Lin, Li, Xianfeng, Zhang, Huamin. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(10): 8742-8750, http://ir.nimte.ac.cn/handle/174433/13935.
[68] Zhang, Keli, Xia, Yonggao, Yang, Zhengdong, Fu, Rusheng, Shen, Chengxu, Liu, Zhaoping. Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries. RSC ADVANCES[J]. 2017, 7(39): 24305-24311, http://ir.nimte.ac.cn/handle/174433/14090.
[69] Fu, Rusheng, Zhang, Keli, Zaccaria, Remo Proietti, Huang, Heran, Xia, Yonggao, Liu, Zhaoping. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. NANO ENERGY[J]. 2017, 39: 546-553, http://dx.doi.org/10.1016/j.nanoen.2017.07.040.
[70] Yang, Liangtao, Xia, Yonggao, Fan, Xu, Qin, Laifen, Qiu, Bao, Liu, Zhaoping. Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery. ELECTROCHIMICA ACTA[J]. 2016, 191: 200-206, http://dx.doi.org/10.1016/j.electacta.2016.01.069.
[71] Cheng, Ting, Zhang, Guoqiang, Xia, Yonggao, Sun, Zaicheng, Yang, Zhaohui, Liu, Rui, Xia, Senlin, Metwalli, Ezzeldin, Xiao, Ying, Wang, Xiaoyan, Wang, Meimei, Ban, Jianzhen, Yang, Liangtao, Ji, Qing, Qiu, Bao, Chen, Guoxin, Chen, Huifeng, Lin, Yichao, Pei, Xiaoying, Wu, Qiang, Meng, JianQiang, Liu, Zhaoping, Chen, Liang, Xiao, Tonghu, Sun, LingDong, Yan, ChunHua, Butt, Hans Juergen, MuellerBuschbaum, Peter, Cheng, YaJun. Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids (vol 469, pg 242, 2016). JOURNAL OF COLLOID AND INTERFACE SCIENCE. 2016, 477: 230-230, http://ir.nimte.ac.cn/handle/174433/12886.
[72] Cheng, Ting, Zhang, Guoqiang, Xia, Yonggao, Ji, Qing, Xiao, Ying, Wang, Xiaoyan, Wang, Meimei, Liu, Rui, Qiu, Bao, Chen, Guoxin, Chen, Huifeng, Sun, Zaicheng, Meng, JianQiang, Liu, Zhaoping, Xiao, Tonghu, Sun, LingDong, Yan, ChunHua, Cheng, YaJun. Template-free synthesis of titania architectures with controlled morphology evolution. JOURNAL OF MATERIALS SCIENCE[J]. 2016, 51(8): 3941-3956, http://ir.ciomp.ac.cn/handle/181722/56885.
[73] 王国华, 夏永高, 刘兆平. 锂离子电池富锂锰基正极材料专利技术分析. 储能科学与技术[J]. 2016, 388-395, http://lib.cqvip.com/Qikan/Article/Detail?id=668766105.
[74] 夏永高, 刘兆平. 锂离子电池高容量富锂锰基正极材料研究进展. 储能科学与技术[J]. 2016, 384-387, http://lib.cqvip.com/Qikan/Article/Detail?id=668766104.
[75] Wang, Meimei, Xia, Yonggao, Wang, Xiaoyan, Xiao, Ying, Liu, Rui, Wu, Qiang, Qiu, Bao, Metwalli, Ezzeldin, Xia, Senlin, Yao, Yuan, Chen, Guoxin, Liu, Yan, Liu, Zhaoping, Meng, JianQjang, Yang, Zhaohui, Sun, LingDong, Yan, ChunHua, MuellerBuschbaum, Peter, Pan, Jing, Cheng, YaJun. Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(22): 13982-13992, https://www.webofscience.com/wos/woscc/full-record/WOS:000377642100037.
[76] Cheng, Ting, Zhang, Guoqiang, Xia, Yonggao, Sun, Zaicheng, Yang, Zhaohui, Liu, Rui, Xiao, Ying, Wang, Xiaoyan, Wang, Meimei, Ban, Jianzhen, Yang, Liangtao, Ji, Qing, Qiu, Bao, Chen, Guoxin, Chen, Huifeng, Lin, Yichao, Pei, Xiaoying, Wu, Qiang, Meng, JianQiang, Liu, Zhaoping, Chen, Liang, Xiao, Tonghu, Sun, LingDong, Yan, ChunHua, Butt, Hans Juergen, Cheng, YaJun. Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2016, 469: 242-256, http://dx.doi.org/10.1016/j.jcis.2016.02.032.
[77] Yang, Liangtao, Xia, Yonggao, Qin, Laifen, Yuan, Guoxia, Qiu, Bao, Shi, Junli, Liu, Zhaoping. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery. JOURNAL OF POWER SOURCES[J]. 2016, 304: 293-300, http://dx.doi.org/10.1016/j.jpowsour.2015.11.037.
[78] Shi, Junli, Xia, Yonggao, Han, Shaojie, Fang, Lifeng, Pan, Meizi, Xu, Xiaoxiong, Liu, Zhaoping. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)(3) based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2015, 273: 389-395, http://dx.doi.org/10.1016/j.jpowsour.2014.09.105.
[79] 胡华胜, 肖锋, 刘兆平, 秦来芬, 夏永高, 陈立鹏. Research Status and Application Prospects of LiMnPO_4 as A New Generation Cathode Material for Lithium-Ion Batteries. JOURNAL OF ELECTROCHEMISTRY[J]. 2015, 21(3): 253-267, http://ir.nimte.ac.cn/handle/174433/12736.
[80] Wei, Zhen, Zhang, Wei, Wang, Feng, Zhang, Qian, Qiu, Bao, Han, Shaojie, Xia, Yonggao, Zhu, Yimei, Liu, Zhaoping. Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2015, 21(20): 7503-7510, http://ir.nimte.ac.cn/handle/174433/12492.
[81] Qin Laifen, Xia Yonggao, Chen Lipeng, Hu Huasheng, Xiao Feng, Liu Zhaoping. Research Status and Application Prospects of LiMnPO_4 as A New Generation Cathode Material for Lithium-Ion Batteries. JOURNAL OF ELECTROCHEMISTRY[J]. 2015, 21(3): http://ir.nimte.ac.cn/handle/174433/12736.
[82] Xia, Lan, Xia, Yonggao, Liu, Zhaoping. Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. ELECTROCHIMICA ACTA[J]. 2015, 151: 429-436, http://dx.doi.org/10.1016/j.electacta.2014.11.062.
[83] Han, Shaojie, Xia, Yonggao, Wei, Zhen, Qiu, Bao, Pan, Lingchao, Gu, Qingwen, Liu, Zhaoping, Guo, Zhiyong. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(22): 11930-11939, http://ir.nimte.ac.cn/handle/174433/12775.
[84] Xia, Lan, Xia, Yonggao, Wang, Chuanshui, Hu, Huasheng, Lee, Saixi, Yu, Qi, Chen, Huichuang, Liu, Zhaoping. 5V-Class Electrolytes Based on Fluorinated Solvents for Li-Ion Batteries with Excellent Cyclability. CHEMELECTROCHEM[J]. 2015, 2(11): 1707-1712, http://ir.nimte.ac.cn/handle/174433/12283.
[85] Shi, Junli, Xia, Yonggao, Yuan, Zhizhang, Hu, Huasheng, Li, Xianfeng, Zhang, Huamin, Liu, Zhaoping. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. SCIENTIFIC REPORTS[J]. 2015, 5: http://dx.doi.org/10.1038/srep08255.
[86] Wang, Xiaoyan, Meng, JianQiang, Wang, Meimei, Xiao, Ying, Liu, Rui, Xia, Yonggao, Yao, Yuan, Metwalli, Ezzeldin, Zhang, Qian, Qiu, Bao, Liu, Zhaoping, Pan, Jing, Sun, LingDong, Yan, ChunHua, MuellerBuschbaum, Peter, Cheng, YaJun. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(43): 24247-24255, http://ir.nimte.ac.cn/handle/174433/12277.
[87] Shi, Junli, Hu, Huasheng, Xia, Yonggao, Liu, Yuanzhuang, Liu, Zhaoping. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(24): 9134-9141, https://www.webofscience.com/wos/woscc/full-record/WOS:000336850600024.
[88] Qin, Laifen, Xia, Yonggao, Cao, Hailiang, Luo, Linjun, Zhang, Qian, Chen, Lipeng, Liu, Zhaoping. Effects of Ti additive on the structure and electrochemical performance of LiMnPO4 cathode material. ELECTROCHIMICA ACTA[J]. 2014, 123: 240-247, http://dx.doi.org/10.1016/j.electacta.2014.01.012.
[89] Qiu, Bao, Zhang, Qian, Hu, Huasheng, Wang, Jun, Liu, Juanjuan, Xia, Yonggao, Zeng, Yongfeng, Wang, Xiaolan, Liu, Zhaoping. Electrochemical investigation of Li-excess layered oxide cathode materials/mesocarbon microbead in 18650 batteries. ELECTROCHIMICA ACTA[J]. 2014, 123: 317-324, http://dx.doi.org/10.1016/j.electacta.2014.01.067.
[90] Qiu, Bao, Wang, Jun, Xia, Yonggao, Wei, Zhen, Han, Shaojie, Liu, Zhaoping. Temperature dependence of the initial coulombic efficiency in Li-rich layered LiLi0.144Ni0.136Co0.136Mn0.544O-2 oxide for lithium-ions batteries. JOURNAL OF POWER SOURCES[J]. 2014, 268: 517-521, http://dx.doi.org/10.1016/j.jpowsour.2014.06.031.
[91] Xiao, Ying, Wang, Xiaoyan, Xia, Yonggao, Yao, Yuan, Metwalli, Ezzeldin, Zhang, Qian, Liu, Rui, Qiu, Bao, Rasool, Majid, Liu, Zhaoping, Meng, JianQiang, Sun, LingDong, Yan, ChunHua, MuellerBuschbaum, Peter, Cheng, YaJun. Green Facile Scalable Synthesis of Titania/Carbon Nanocomposites: New Use of Old Dental Resins. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(21): 18461-18468, https://www.webofscience.com/wos/woscc/full-record/WOS:000344978200015.
[92] Liu, Yuanzhuang, Zhang, Minghao, Xia, Yonggao, Qiu, Bao, Liu, Zhaoping, Li, Xing. One-step hydrothermal method synthesis of core shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2014, 256: 66-71, http://dx.doi.org/10.1016/j.jpowsour.2014.01.059.
[93] Hu, Lingjun, Qiu, Bao, Xia, Yonggao, Qin, Zhihong, Qin, Laifen, Zhou, Xufeng, Liu, Zhaoping. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2014, 248(1): 246-252, http://dx.doi.org/10.1016/j.jpowsour.2013.09.048.
[94] Han, Shaojie, Qiu, Bao, Wei, Zhen, Xia, Yonggao, Liu, Zhaoping. Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. JOURNAL OF POWER SOURCES[J]. 2014, 268: 683-691, http://dx.doi.org/10.1016/j.jpowsour.2014.06.106.
[95] Zhang, Minghao, Liu, Yuanzhuang, Xia, Yonggao, Qiu, Bao, Wang, Jun, Liu, Zhaoping. Simplified co-precipitation synthesis of spinel LiNi0.5Mn1.5O4 with improved physical and electrochemical performance. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2014, 598: 73-78, https://www.webofscience.com/wos/woscc/full-record/WOS:000333084200013.
[96] Qiu, Bao, Wang, Jun, Xia, Yonggao, Wei, Zhen, Han, Shaojie, Liu, Zhaoping. Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(12): 9185-9193, https://www.webofscience.com/wos/woscc/full-record/WOS:000338184500033.
[97] Chen, Liang, Gu, Qingwen, Zhou, Xufeng, Lee, Saixi, Xia, Yonggao, Liu, Zhaoping. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes. SCIENTIFIC REPORTS[J]. 2013, 3: https://www.webofscience.com/wos/woscc/full-record/WOS:000319899500008.
[98] Qiu, Bao, Wang, Jun, Xia, Yonggao, Liu, Yuanzhuang, Qin, Laifen, Yao, Xiayin, Liu, Zhaoping. Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. JOURNAL OF POWER SOURCES[J]. 2013, 240(1): 530-535, http://dx.doi.org/10.1016/j.jpowsour.2013.04.047.
[99] 夏永高, 刘兆平. Morphology-control preparation and electrochemical performance of Mn-spinel cathode materials. 科学通报[J]. 2013, 58(32): 3350—3356-, http://www.irgrid.ac.cn/handle/1471x/755732.
[100] Xia Yonggao, Liu Zhaoping. Synthesis and electrochemical performances of (1-x)LiMnPO4.xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. J. POWER SOURCES[J]. 2013, 144—150-, http://www.irgrid.ac.cn/handle/1471x/755684.
[101] Laifen Qin, Yonggao Xia, Bao Qiu, Hailiang Cao, Yuanzhuang Liu, Zhaoping Liu. Synthesis and electrochemical performances of (1−x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. JOURNALOFPOWERSOURCES. 2013, 239: 144-150, http://dx.doi.org/10.1016/j.jpowsour.2013.03.063.
[102] Wang, Jun, Yuan, Guoxia, Zhang, Minghao, Qiu, Bao, Xia, Yonggao, Liu, Zhaoping. The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 <= x <= 0.7) cathode materials. ELECTROCHIMICA ACTA[J]. 2012, 66: 61-66, http://dx.doi.org/10.1016/j.electacta.2012.01.032.
[103] Juanjuan Liu, Jun Wang, Yonggao Xia, Xufeng Zhou, Yaletu Saixi, Zhaoping Liu. Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+δ (0 ≤ x ≤ 0.15) cathode materials for lithium-ion batteries. MATERIALS RESEARCH BULLETIN[J]. 2012, 47(3): 807-812, http://dx.doi.org/10.1016/j.materresbull.2011.11.058.
[104] Liu, Juanjuan, Wang, Jun, Xia, Yonggao, Zhou, Xufeng, Saixi, Yaletu, Liu, Zhaoping. Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+delta (0 <= x <= 0.15) cathode materials for lithium-ion batteries. MATERIALS RESEARCH BULLETIN[J]. 2012, 47(3): 807-812, https://www.webofscience.com/wos/woscc/full-record/WOS:000301994100050.
[105] Qin, Zhihong, Zhou, Xufeng, Xia, Yonggao, Tang, Changlin, Liu, Zhaoping. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(39): 21144-21153, https://www.webofscience.com/wos/woscc/full-record/WOS:000308893400048.
[106] Zhang, Minghao, Wang, Jun, Xia, Yonggao, Liu, Zhaoping. Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2012, 518: 68-73, https://www.webofscience.com/wos/woscc/full-record/WOS:000300186500013.
[107] Wang, Jun, Qiu, Bao, Cao, Hailiang, Xia, Yonggao, Liu, Zhaoping. Electrochemical properties of 0.6LiLi1/3Mn2/3O-2-0.4LiNi(x)Mn(y)Co(1-x-y)O(2) cathode materials for lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2012, 218(218): 128-133, http://dx.doi.org/10.1016/j.jpowsour.2012.06.067.
[108] Wang, Jun, Xia, Yonggao, Yao, Xiayin, Zhang, Minghao, Zhang, Yiming, Liu, Zhaoping. Synthesis and Electrochemical Feature of a Multiple-Phases Li-Rich Nickel Manganese Oxides Cathode Material. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE[J]. 2011, 6(12): 6670-6681, https://www.webofscience.com/wos/woscc/full-record/WOS:000297571400056.
[109] Xia, Yonggao, Wang, Hongyu, Zhang, Qing, Nakamura, Hiroyoshi, Noguchi, Hideyuki, Yoshio, Masaki. Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2007, 166(2): 485-491, http://dx.doi.org/10.1016/j.jpowsour.2007.01.023.
[110] Dimov, Nikolay, Xia, Yonggao, Yoshio, Masaki. Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features. JOURNAL OF POWER SOURCES[J]. 2007, 171(2): 886-893, http://dx.doi.org/10.1016/j.jpowsour.2007.06.026.
[111] Yonggao Xia, Qing Zhang, Hongyu Wang, Hiroyoshi Nakamura, Hideyuki Noguchi, Masaki Yoshio. Improved cycling performance of oxygen-stoichiometric spinel Li 1+ xAl yMn 2− x− yO 4+ δ at elevated temperature. ELECTROCHIMICA ACTA. 2007, 52(14): 4708-4714, http://dx.doi.org/10.1016/j.electacta.2007.01.004.
[112] Sun, Yucheng, Xia, Yonggao, Shiosaki, Yuki, Noguchi, Hideyuki. Preparation and electrochemical properties of LiCoO2-LiNi0.5Mn0.5O2-Li2MnO3 solid solutions with high Mn contents. ELECTROCHIMICA ACTA[J]. 2006, 51(26): 5581-5586, http://dx.doi.org/10.1016/j.electacta.2006.02.041.
[113] Xia, Yonggao, Yoshio, Masaki, Noguchi, Hideyuki. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. ELECTROCHIMICA ACTA[J]. 2006, 52(1): 240-245, http://dx.doi.org/10.1016/j.electacta.2006.05.002.
[114] Sun, Yucheng, Xia, Yonggao, Noguchi, Hideyuki. The improved physical and electrochemical performance of LiNi0.35Co0.3-xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2006, 159(2): 1377-1382, http://dx.doi.org/10.1016/j.jpowsour.2005.12.022.
[115] Sun, YC, Xia, YG, Noguchi, H. Effects of cr contents on the physical and electrochemical properties of LiNi0.5-xCr2xMn0.5-xO2 cathode materials for lithium-ion batteries. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2005, 8(12): A637-A640, https://www.webofscience.com/wos/woscc/full-record/WOS:000232697800006.
[116] 夏永高. 一种快速有效的从废磷酸铁锂电池中选择性提取锂的方法. Environmental Technology & Innovation. 0419, [117] Tianle Zheng, Jianwei Xiong, Xiaotang Shi, Bingying Zhu, YaJun Cheng, Hongbin Zhao, Yonggao Xia. nCocktail Therapy towards High Temperature/High Voltage Lithium Metal Battery via Solvation Sheath Structure Tuning. ENERGY STORAGE MATERIALS. http://dx.doi.org/10.1016/j.ensm.2021.04.002.
[118] 赛喜雅勒图, 胡华胜, 夏永高, 肖锋, 刘兆平. 高温型锰酸锂正极材料的晶体形貌控制和电化学性能. 科学通报. 58: https://www.sciengine.com/doi/10.1360/972013-805.
发表著作
(1) Chronicle Evolution of Research on TiO2 Based Lithium-Ion Battery Anodes, NONA Science Publishers, 2018-04, 第 2 作者
(2) Practically Relevant Research on Silicon Based Lithium-Ion Battery Anodes, Scrivener Publishing, 2019-01, 第 2 作者
(3) A Brief Chronicle Record of Studies on Non-Silicon (Sn, Sb, Ge)-Based Alloy Type Lithium-Ion Battery Anodes, NONA Science Publishers, 2019-03, 第 2 作者

科研活动

   
科研项目
( 1 ) 春蕾人才计划, 主持, 市地级, 2011-03--2015-03
( 2 ) 高比能锂电池新体系及关键材料研究, 参与, 部委级, 2012-04--2015-03
( 3 ) 轻型电动车磷酸铁锂动力电池高性能化关键技术, 参与, 省级, 2012-08--2014-07
( 4 ) 高能量密度动力锂电池材料技术 , 参与, 部委级, 2012-10--2015-10
( 5 ) 中科中宇磷酸铁锂动力电池技术研究中心, 主持, 研究所(学校), 2011-10--2016-10
( 6 ) 新一代锂离子电池材料创新团队, 参与, 省级, 2013-01--2015-12
( 7 ) 高温型锰酸锂正极材料中试技术开发, 主持, 研究所(学校), 2013-04--2014-05
( 8 ) 尖晶石锰酸锂正极材料的晶面控制与高温锰溶解机理研究, 主持, 省级, 2013-01--2015-12
( 9 ) 基于多种储能互补的协调控制系统研究与示范, 参与, 国家级, 2011-04--2013-12
( 10 ) 动力锂离子电池磷酸铁锂正极材料, 参与, 国家级, 2011-08--2013-12
( 11 ) 青年创新促进会, 主持, 部委级, 2015-01--2018-12
( 12 ) 400Wh/kg锂离子电池, 主持, 国家级, 2016-07--2020-06
( 13 ) 富锂锰基正极材料锂/锂空位行为与电压衰减机理及调控研究, 主持, 国家级, 2019-01--2021-12
参与会议
(1)Development of new type Mn-base positive materials   2013中国锂电池正负极材料发展论坛   夏永高,刘兆平   2013-04-08
(2)锂离子电池新型锰系正极材料的开发   第28届化学学术年会   夏永高 刘兆平 许晓雄 周旭峰 王军   2012-04-13
(3)锂电池新型正极材料的技术创新与研究进展   2012中国锂电正极材料研讨会   夏永高,刘兆平   2012-03-28
(4)Development of Manganese-based Cathode Materials for Lithium Ion Batteries   2011中国(宁波)动力锂离子电池及产业发展国际研讨会   Yonggao Xia   2011-10-11

合作情况

台塑三井、宁波容百、中国铁塔、德朗能等