发表论文
[1] Liu, Ting, Dong, Di, Zhao, Xun, Ou, XiaoMin, Yi, JunLin, Guan, Jian, Zhang, Ye, XiaoFei, Lv, Xie, ChuanMiao, Luo, DongHua, Sun, Rui, Chen, QiuYan, Xing, Lv, Guo, ShanShan, Liu, LiTing, Lin, DaFeng, Chen, YanZhou, Lin, JieYi, Luo, MeiJuan, Yan, WenBin, He, MeiLin, Mao, MengYuan, Zhu, ManYi, Chen, WenHui, Shen, BoWen, Wang, ShiQian, Li, HaiLin, Zhong, LianZhen, Hu, ChaoSu, Wu, DeHua, Mai, HaiQiang, Tian, Jie, Tang, LinQuan. Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study. BMC MEDICINE[J]. 2023, 第 2 作者21(1): http://dx.doi.org/10.1186/s12916-023-03164-3.[2] Mengjie Fang, Zipei Wang, Jie Tian, Di Dong. Predicting origin for bone metastatic cancer using deep learning-based pathology. EBIOMEDICINE[J]. 2023, 第 4 作者 通讯作者 88: 104449, http://dx.doi.org/10.1016/j.ebiom.2023.104449.[3] Liu, Shengyuan, Deng, Jingyu, Dong, Di, Fang, Mengjie, Ye, Zhaoxiang, Hu, Yanfeng, Li, Hailin, Zhong, Lianzhen, Cao, Runnan, Zhao, Xun, Shang, Wenting, Li, Guoxin, Liang, Han, Tian, Jie. Deep learning-based radiomics model can predict extranodal soft tissue metastasis in gastric cancer. MEDICAL PHYSICS. 2023, 第 3 作者http://dx.doi.org/10.1002/mp.16647.[4] Li, Hailin, Wang, Siwen, Liu, Bo, Fang, Mengjie, Cao, Runnan, He, Bingxi, Liu, Shengyuan, Hu, Chaoen, Dong, Di, Wang, Ximing, Wang, Hexiang, Tian, Jie. A multi-view co-training network for semi-supervised medical image-based prognostic prediction. NEURAL NETWORKS[J]. 2023, 第 9 作者 通讯作者 164: 455-463, http://dx.doi.org/10.1016/j.neunet.2023.04.030.[5] Zhang, ShuaiTong, Wang, SiYun, Zhang, Jie, Dong, Di, Mu, Wei, Xia, Xueer, Fu, FangFang, Lu, YaNan, Wang, Shuo, Tang, ZhenChao, Li, Peng, Qu, JinRong, Wang, MeiYun, Tian, Jie, Liu, JianHua. Artificial intelligence-based computer-aided diagnosis system supports diagnosis of lymph node metastasis in esophageal squamous cell carcinoma: A multicenter study. HELIYON[J]. 2023, 第 4 作者9(3): http://dx.doi.org/10.1016/j.heliyon.2023.e14030.[6] Kun Wang, Yang Du, Zeyu Zhang, Kunshan He, Zhongquan Cheng, Lin Yin, Di Dong, Changjian Li, Wei Li, Zhenhua Hu, Chong Zhang, Hui Hui, Chongwei Chi, Jie Tian. Fluorescence image-guided tumour surgery. Nature Reviews Bioengineering[J]. 2023, 第 7 作者1(3): 161-179, [7] Liwen Zhang, Lianzhen Zhong, Cong Li, Wenjuan Zhang, Chaoen Hu, Di Dong, Zaiyi Liu, Junlin Zhou, Jie Tian. Knowledge-guided multi-task attention network for survival risk prediction using multi-center computed tomography images. NEURAL NETWORKS[J]. 2022, 第 6 作者 通讯作者 152: 394-406, doi.org/10.1016/j.neunet.2022.04.027.[8] 操润楠, 方梦捷, 李海林, 田捷, 董迪. 半监督内镜图像长尾分类. 中国医学科学杂志:英文版[J]. 2022, 第 5 作者 通讯作者 37(3): 171-180, http://lib.cqvip.com/Qikan/Article/Detail?id=7108258218.[9] Gong, Lixin, Wang, Min, Shu, Lei, He, Jie, Qin, Bin, Xu, Jiacheng, Su, Wei, Dong, Di, Hu, Hao, Tian, Jie, Zhou, Pinghong. Automatic captioning of early gastric cancer using magnification endoscopy with narrow-band imaging. GASTROINTESTINAL ENDOSCOPY[J]. 2022, 第 8 作者96(6): 929-+, http://dx.doi.org/10.1016/j.gie.2022.07.019.[10] Mengjie Fang, Jie Tian, Di Dong. Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics. ECLINICALMEDICINE[J]. 2022, 第 3 作者 通讯作者 46: 101380, [11] Lixin Gong, Min Xu, Mengjie Fang, Bingxi He, Hailin Li, Xiangming Fang, Di Dong, Jie Tian. The potential of prostate gland radiomic features in identifying the Gleason score. COMPUTERS IN BIOLOGY AND MEDICINE[J]. 2022, 第 7 作者 通讯作者 144: 105318, [12] Li, Cong, Qin, Yun, Zhang, WeiHan, Jiang, Hanyu, Song, Bin, Bashir, Mustafa R, Xu, Heng, Duan, Ting, Fang, Mengjie, Zhong, Lianzhen, Meng, Lingwei, Dong, Di, Hu, Zhenhua, Tian, Jie, Hu, JianKun. Deep learning-based AI model for signet-ring cell carcinoma diagnosis and chemotherapy response prediction in gastric cancer. MEDICAL PHYSICS[J]. 2022, 第 12 作者 通讯作者 49(3): 1535-1546, https://www.doi.org/10.1002/mp.15437.[13] Zhao, Xun, Liang, YuJing, Zhang, Xu, Wen, DongXiang, Fan, Wei, Tang, LinQuan, Dong, Di, Tian, Jie, Mai, HaiQiang. Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING[J]. 2022, 第 7 作者 通讯作者 49: 2972-2982, [14] Cao, Runnan, Tang, Lei, Fang, Mengjie, Zhong, Lianzhen, Wang, Siwen, Gong, Lixin, Li, Jiazheng, Dong, Di, Tian, Jie. Artificial intelligence in gastric cancer: applications and challenges. GASTROENTEROLOGY REPORT. 2022, 第 8 作者 通讯作者 10(6): https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000892487000003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.[15] He, BingXi, Zhong, YiFan, Zhu, YongBei, Deng, JiaJun, Fang, MengJie, She, YunLang, Wang, TingTing, Yang, Yang, Sun, XiWen, Belluomini, Lorenzo, Watanabe, Satoshi, Dong, Di, Tian, Jie, Xie, Dong. Deep learning for predicting immunotherapeutic efficacy in advanced non-small cell lung cancer patients: a retrospective study combining progression-free survival risk and overall survival risk. TRANSLATIONAL LUNG CANCER RESEARCH[J]. 2022, 第 12 作者 通讯作者 11(4): 670-685, [16] Liu, Yujia, Duan, Hui, Dong, Di, Chen, Jiaming, Zhong, Lianzhen, Zhang, Liwen, Cao, Runnan, Fan, Huijian, Cui, Zhumei, Liu, Ping, Kang, Shan, Zhan, Xuemei, Wang, Shaoguang, Zhao, Xun, Chen, Chunlin, Tian, Jie. Development of a deep learning-based nomogram for predicting lymph node metastasis in cervical cancer: A multicenter study. CLINICAL AND TRANSLATIONAL MEDICINE[J]. 2022, 第 3 作者12(7): http://dx.doi.org/10.1002/ctm2.938.[17] Liwen Zhang, Di Dong, Yongqing Sun, Chaoen Hu, Congxin Sun, Qingqing Wu, Jie Tian. Development and validation of a deep learning model to screen for trisomy 21 during the first trimester from nuchal ultrasonographic images. JAMA NETWORK OPEN[J]. 2022, 第 2 作者5(6): e2217854, [18] She, Yunlang, He, Bingxi, Wang, Fang, Zhong, Yifan, Wang, Tingting, Liu, Zhenchuan, Yang, Minglei, Yu, Bentong, Deng, Jiajun, Sun, Xiwen, Wu, Chunyan, Hou, Likun, Zhu, Yuming, Yang, Yang, Hu, Hongjie, Dong, Di, Chen, Chang, Tian, Jie. Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study. EBIOMEDICINE[J]. 2022, 第 16 作者 通讯作者 86: http://dx.doi.org/10.1016/j.ebiom.2022.104364.[19] Wang, Siwen, Dong, Di, Li, Liang, Li, Hailin, Bai, Yan, Hu, Yahua, Huang, Yuanyi, Yu, Xiangrong, Liu, Sibin, Qiu, Xiaoming, Lu, Ligong, Wang, Meiyun, Zha, Yunfei, Tian, Jie. A Deep Learning Radiomics Model to Identify Poor Outcome in COVID-19 Patients With Underlying Health Conditions: A Multicenter Study. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2021, 第 2 作者25(7): 2353-2362, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000678341200001.[20] Zhang, Lu, Wu, Xiangjun, Liu, Jing, Zhang, Bin, Mo, Xiaokai, Chen, Qiuying, Fang, Jin, Wang, Fei, Li, Minmin, Chen, Zhuozhi, Liu, Shuyi, Chen, Luyan, You, Jingjing, Jin, Zhe, Tang, Binghang, Dong, Di, Zhang, Shuixing. MRI-Based Deep-Learning Model for Distant Metastasis-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2021, 第 16 作者 通讯作者 53(1): 167-178, http://dx.doi.org/10.1002/jmri.27308.[21] Tian, Panwen, He, Bingxi, Mu, Wei, Liu, Kunqin, Liu, Li, Zeng, Hao, Liu, Yujie, Jiang, Lili, Zhou, Ping, Huang, Zhipei, Dong, Di, Li, Weimin. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. THERANOSTICS[J]. 2021, 第 11 作者 通讯作者 11(5): 2098-2107, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797686/.[22] Meng, Lingwei, Dong, Di, Chen, Xin, Fang, Mengjie, Wang, Rongpin, Li, Jing, Liu, Zaiyi, Tian, Jie. 2D and 3D CT Radiomic Features Performance Comparison in Characterization of Gastric Cancer: A Multi-Center Study. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2021, 第 2 作者25(3): 755-763, http://dx.doi.org/10.1109/JBHI.2020.3002805.[23] Wang, Xiaoxiao, Li, Cong, Fang, Mengjie, Zhang, Liwen, Zhong, Lianzhen, Dong, Di, Tian, Jie, Shan, Xiuhong. Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer. BMC MEDICAL IMAGING[J]. 2021, 第 6 作者 通讯作者 21(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989204/.[24] Dong, Di, Tang, Zhenchao, Wang, Shuo, Hui, Hui, Gong, Lixin, Lu, Yao, Xue, Zhong, Liao, Hongen, Chen, Fang, Yang, Fan, Jin, Ronghua, Wang, Kun, Liu, Zhenyu, Wei, Jingwei, Mu, Wei, Zhang, Hui, Jiang, Jingying, Tian, Jie, Li, Hongjun. The Role of Imaging in the Detection and Management of COVID-19: A Review. IEEE REVIEWS IN BIOMEDICAL ENGINEERING. 2021, 第 1 作者14: 16-29, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000708445300006.[25] Wang, Siwen, Dong, Di, Zhang, Wenjuan, Hu, Hui, Li, Hailin, Zhu, Yongbei, Zhou, Junlin, Shan, Xiuhong, Tian, Jie. Specific Borrmann classification in advanced gastric cancer by an ensemble multilayer perceptron network: a multicenter research. MEDICAL PHYSICS[J]. 2021, 第 2 作者48(9): 5017-5028, http://dx.doi.org/10.1002/mp.15094.[26] Wu, Xiangjun, Dong, Di, Zhang, Lu, Fang, Mengjie, Zhu, Yongbei, He, Bingxi, Ye, Zhaoxiang, Zhang, Minming, Zhang, Shuixing, Tian, Jie. Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: A multicenter study. MEDICAL PHYSICS[J]. 2021, 第 2 作者48(5): 2374-2385, http://dx.doi.org/10.1002/mp.14767.[27] Zhang, Liwen, Dong, Di, Zhong, Lianzhen, Li, Cong, Hu, Chaoen, Yang, Xin, Liu, Zaiyi, Wang, Rongpin, Zhou, Junlin, Tian, Jie. Multi-Focus Network to Decode Imaging Phenotype for Overall Survival Prediction of Gastric Cancer Patients. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2021, 第 2 作者25(10): 3933-3942, http://dx.doi.org/10.1109/JBHI.2021.3087634.[28] Hu, Hao, Gong, Lixin, Dong, Di, Zhu, Liang, Wang, Min, He, Jie, Shu, Lei, Cai, Yiling, Cai, Shilun, Su, Wei, Zhong, Yunshi, Li, Cong, Zhu, Yongbei, Fang, Mengjie, Zhong, Lianzhen, Yang, Xin, Zhou, Pinghong, Tian, Jie. Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study. GASTROINTESTINAL ENDOSCOPY[J]. 2021, 第 3 作者93(6): 1333-+, http://dx.doi.org/10.1016/j.gie.2020.11.014.[29] Zhong, Lianzhen, Dong, Di, Fang, Xueliang, Zhang, Fan, Zhang, Ning, Zhang, Liwen, Fang, Mengjie, Jiang, Wei, Liang, Shaobo, Li, Cong, Liu, Yujia, Zhao, Xun, Cao, Runnan, Shan, Hong, Hu, Zhenhua, Ma, Jun, Tang, Linglong, Tian, Jie. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study. EBIOMEDICINE[J]. 2021, 第 2 作者70: http://dx.doi.org/10.1016/j.ebiom.2021.103522.[30] Sun, RuiJia, Fang, MengJie, Tang, Lei, Li, XiaoTing, Lu, QiaoYuan, Dong, Di, Tian, Jie, Sun, YingShi. CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2020, 第 6 作者 通讯作者 132: http://dx.doi.org/10.1016/j.ejrad.2020.109277.[31] Di Dong. Predicting response to immunotherapy in advanced non-small cell lung cancer using tumour mutational burden radiomic biomarker. Journal for ImmunoTherapy of Cancer (共同第一作者). 2020, 第 1 作者[32] Li, Hailin, Zhang, Rui, Wang, Siwen, Fang, Mengjie, Zhu, Yongbei, Hu, Zhenhua, Dong, Di, Shi, Jingyun, Tian, Jie. CT-Based Radiomic Signature as a Prognostic Factor in Stage IV ALK -Positive Non-small-cell Lung Cancer Treated With TKI Crizotinib: A Proof-of-Concept Study. FRONTIERS IN ONCOLOGY[J]. 2020, 第 7 作者 通讯作者 10: http://dx.doi.org/10.3389/fonc.2020.00057.[33] Zhong, Lianzhen, Dong, Di, Tang, Linglong, Han, Shuyan, Tian, Jie. Deep learning-based prognosis prediction in T3N1 nasopharyngeal carcinoma patients treated with induction chemotherapy followed by concurrent chemoradiotherapy. CANCER RESEARCH[J]. 2020, 第 2 作者80(16): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000590059301397.[34] Chen, Jiaming, He, Bingxi, Dong, Di, Liu, Ping, Duan, Hui, Li, Weili, Li, Pengfei, Wang, Lu, Fan, Huijian, Wang, Siwen, Zhang, Liwen, Tian, Jie, Huang, Zhipei, Chen, Chunlin. Noninvasive CT radiomic model for preoperative prediction of lymph node metastasis in early cervical carcinoma. BRITISH JOURNAL OF RADIOLOGY[J]. 2020, 第 3 作者93(1108): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362918/.[35] Li, Jing, Dong, Di, Fang, Mengjie, Wang, Rui, Tian, Jie, Li, Hailiang, Gao, Jianbo. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. EUROPEAN RADIOLOGY[J]. 2020, 第 2 作者30(4): 10, https://www.webofscience.com/wos/woscc/full-record/WOS:000507798400010.[36] 王睿, 李靖, 方梦捷, 董迪, 梁盼, 高剑波. 基于能谱CT的影像组学术前预测进展期胃癌淋巴结转移的价值. 中华医学杂志[J]. 2020, 第 4 作者100(21): 1617-1622, http://lib.cqvip.com/Qikan/Article/Detail?id=7102206832.[37] Hu, Wenchao, Wu, Xiangjun, Dong, Di, Cui, LongBiao, Jiang, Min, Zhang, Jibin, Wang, Yabin, Wang, ***, Gao, Lei, Tian, Jie, Cao, Feng. Novel radiomics features from CCTA images for the functional evaluation of significant ischaemic lesions based on the coronary fractional flow reserve score. INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING[J]. 2020, 第 3 作者36(10): 2039-2050, http://dx.doi.org/10.1007/s10554-020-01896-4.[38] Li, Cong, Dong, Di, Li, Liang, Gong, Wei, Li, Xiaohu, Bai, Yan, Wang, Meiyun, Hu, Zhenhua, Zha, Yunfei, Tian, Jie. Classification of Severe and Critical Covid-19 Using Deep Learning and Radiomics. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2020, 第 2 作者24(12): 3585-3594, http://dx.doi.org/10.1109/JBHI.2020.3036722.[39] He, Bingxi, Dong, Di, She, Yunlang, Zhou, Caicun, Fang, Mengjie, Zhu, Yongbei, Zhang, Henghui, Huang, Zhipei, Jiang, Tao, Tian, Jie, Chen, Chang. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. JOURNAL FOR IMMUNOTHERAPY OF CANCER[J]. 2020, 第 2 作者8(2): http://dx.doi.org/10.1136/jitc-2020-000550.[40] Su, Jiehua, Meng, Lingwei, Dong, Di, Zhuo, Wenyan, Wang, Jianming, Liu, Libin, Qin, Yi, Tian, Ye, Tian, Jie, Li, Zhaohui. Noninvasive model for predicting future ischemic strokes in patients with silent lacunar infarction using radiomics. BMC MEDICAL IMAGING[J]. 2020, 第 3 作者20(1): http://dx.doi.org/10.1186/s12880-020-00470-7.[41] Zhang, Wenjuan, Fang, Mengjie, Dong, Di, Wang, Xiaoxiao, Ke, Xiaoai, Zhang, Liwen, Hu, Chaoen, Guo, Lingyun, Guan, Xiaoying, Zhou, Junlin, Shan, Xiuhong, Tian, Jie. Development and validation of a CT-based radiomic nomogram for preoperative prediction of early recurrence in advanced gastric cancer. RADIOTHERAPY AND ONCOLOGY[J]. 2020, 第 3 作者145: 13-20, http://dx.doi.org/10.1016/j.radonc.2019.11.023.[42] Li, Qiong, Liu, Yujia, Dong, Di, Bai, Xu, Huang, Qingbo, Guo, Aitao, Ye, Huiyi, Tian, Jie, Wang, Haiyi. Multiparametric MRI Radiomic Model for Preoperative Predicting WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2020, 第 3 作者52(5): 1557-1566, https://www.webofscience.com/wos/woscc/full-record/WOS:000535717500001.[43] Zhou, Hongyu, Mao, Haixia, Dong, Di, Fang, Mengjie, Gu, Dongsheng, Liu, Xueling, Xu, Min, Yang, Shudong, Zou, Jian, Yin, Ruohan, Zheng, Hairong, Tian, Jie, Pan, Changjie, Fang, Xiangming. Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma. ANNALS OF SURGICAL ONCOLOGY[J]. 2020, 第 3 作者27(10): 4057-4065, http://dx.doi.org/10.1245/s10434-020-08255-6.[44] Di Dong. First-trimester screening for trisomy 21 via an individualized nomogram. Ultrasound in Obstetrics and Gynecology (共同第一作者). 2020, 第 1 作者[45] Zhong, LianZhen, Fang, XueLiang, Dong, Di, Peng, Hao, Fang, MengJie, Huang, ChengLong, He, BingXi, Lin, Li, Ma, Jun, Tang, LingLong, Tian, Jie. A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0. RADIOTHERAPY AND ONCOLOGY[J]. 2020, 第 3 作者151: 1-9, http://dx.doi.org/10.1016/j.radonc.2020.06.050.[46] Li, Hailin, Zhang, Rui, Wang, Siwen, Fang, Mengjie, Zhu, Yongbei, Hu, Zhenhua, Dong, Di, Shi, Jingyun, Tian, Jie. CT-Based Radiomic Signature as a Prognostic Factor in Stage IV ALK-Positive Non-small-cell Lung Cancer Treated With TKI Crizotinib: A Proof-of-Concept Study. FRONTIERS IN ONCOLOGY[J]. 2020, 第 7 作者 通讯作者 10: https://doaj.org/article/8f3e9d9ba97e49a48f116306be0d2d0e.[47] Gong, Lixin, Xu, Min, Fang, Mengjie, Zou, Jian, Yang, Shudong, Yu, Xinyi, Xu, Dandan, Zhou, Lijuan, Li, Hailin, He, Bingxi, Wang, Yan, Fang, Xiangming, Dong, Di, Tian, Jie. Noninvasive Prediction of High-Grade Prostate Cancer via Biparametric MRI Radiomics. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2020, 第 13 作者 通讯作者 52(4): 1102-1109, http://dx.doi.org/10.1002/jmri.27132.[48] Fu, Jia, Fang, Mengjie, Dong, Di, Li, Jian, Sun, Yingshi, Tian, Jie, Tang, Lei. Heterogeneity of metastatic gastrointestinal stromal tumor on texture analysis: DWI texture as potential biomarker of overall survival. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2020, 第 3 作者125: http://dx.doi.org/10.1016/j.ejrad.2020.108825.[49] Wang, XiaoXiao, Ding, Yi, Wang, SiWen, Dong, Di, Li, HaiLin, Chen, Jian, Hu, Hui, Lu, Chao, Tian, Jie, Shan, XiuHong. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer. CANCER IMAGING[J]. 2020, 第 4 作者20(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684959/.[50] Mo, Xiaokai, Wu, Xiangjun, Dong, Di, Guo, Baoliang, Liang, Changhong, Luo, Xiaoning, Zhang, Bin, Zhang, Lu, Dong, Yuhao, Lian, Zhouyang, Liu, Jing, Pei, Shufang, Huang, Wenhui, Ouyang, Fusheng, Tian, Jie, Zhang, Shuixing. Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation. EUROPEAN RADIOLOGY[J]. 2020, 第 3 作者30(2): 833-843, https://www.webofscience.com/wos/woscc/full-record/WOS:000511977900017.[51] Zhang, Fan, Zhong, LianZhen, Zhao, Xun, Dong, Di, Yao, JiJin, Wang, SiYang, Liu, Ye, Zhu, Ding, Wang, Yin, Wang, GuoJie, Wang, YiMing, Li, Dan, Wei, Jiang, Tian, Jie, Shan, Hong. A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study. THERAPEUTIC ADVANCES IN MEDICAL ONCOLOGY[J]. 2020, 第 4 作者12: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/.[52] Wang, Siwen, Feng, Caizhen, Dong, Di, Li, Hailin, Zhou, Jing, Ye, Yingjiang, Liu, Zaiyi, Tian, Jie, Wang, Yi. Preoperative computed tomography-guided disease-free survival prediction in gastric cancer: a multicenter radiomics study. MEDICAL PHYSICS[J]. 2020, 第 3 作者47(10): 4862-4871, http://dx.doi.org/10.1002/mp.14350.[53] Zhang, Liwen, Dong, Di, Zhang, Wenjuan, Hao, Xiaohan, Fang, Mengjie, Wang, Shuo, Li, Wuchao, Liu, Zaiyi, Wang, Rongpin, Zhou, Junlin, Tian, Jie. A deep learning risk prediction model for overall survival in patients with gastric cancer: A multicenter study. RADIOTHERAPY AND ONCOLOGY[J]. 2020, 第 2 作者150: 73-80, http://dx.doi.org/10.1016/j.radonc.2020.06.010.[54] Fang, Mengjie, He, Bingxi, Li, Li, Dong, Di, Yang, Xin, Li, Cong, Meng, Lingwei, Zhong, Lianzhen, Li, Hailin, Li, Hongjun, Tian, Jie. CT radiomics can help screen the Coronavirus disease 2019 (COVID-19): a preliminary study. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2020, 第 4 作者63(7): 218-225, https://www.sciengine.com/doi/10.1007/s11432-020-2849-3.[55] Fang, Mengjie, Kan, Yangyang, Dong, Di, Yu, Tao, Zhao, Nannan, Jiang, Wenyan, Zhong, Lianzhen, Hu, Chaoen, Luo, Yahong, Tian, Jie. Multi-Habitat Based Radiomics for the Prediction of Treatment Response to Concurrent Chemotherapy and Radiation Therapy in Locally Advanced Cervical Cancer. FRONTIERS IN ONCOLOGY[J]. 2020, 第 3 作者10: https://doaj.org/article/8e5c135175044828a56dad86d708b0e6.[56] Meng, Lingwei, Dong, Di, Li, Liang, Niu, Meng, Bai, Yan, Wang, Meiyun, Qiu, Xiaoming, Zha, Yunfei, Tian, Jie. A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2020, 第 2 作者24(12): 3576-3584, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545180/.[57] 王超, 刘侠, 董迪, 臧丽亚, 刘再毅, 梁长虹, 田捷. 基于影像组学的非小细胞肺癌淋巴结转移预测. 自动化学报[J]. 2019, 第 3 作者45(6): 1087-1093, http://www.aas.net.cn:80/cn/article/doi/10.16383/j.aas.c160794.[58] Chen, Xin, Fang, Mengjie, Dong, Di, Liu, Lingling, Xu, Xiangdong, Wei, Xinhua, Jiang, Xinqing, Qin, Lei, Liu, Zaiyi. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. ACADEMIC RADIOLOGY[J]. 2019, 第 3 作者26(10): 1292-1300, http://dx.doi.org/10.1016/j.acra.2018.12.016.[59] Fang Mengjie, Zhang Wenjuan, Dong Di, Zhou Junlin, Tian Jie, Angelini ED, Landman BA. Predicting histopathological findings of gastric cancer via deep generalized multi-instance learning. MEDICAL IMAGING 2019: IMAGE PROCESSING. 2019, 第 3 作者10949: [60] Dong, Di, Zhang, Fan, Zhong, LianZhen, Fang, MengJie, Huang, ChengLong, Yao, JiJin, Sun, Ying, Tian, Jie, Ma, Jun, Tang, LingLong. Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959). BMC MEDICINE[J]. 2019, 第 1 作者17(1): [61] Peng, Hao, Dong, Di, Fang, MengJie, Li, Lu, Tang, LingLong, Chen, Lei, Li, WenFei, Mao, YanPing, Fan, Wei, Liu, LiZhi, Tian, Li, Lin, AiHua, Sun, Ying, Tian, Jie, Ma, Jun. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. CLINICAL CANCER RESEARCH[J]. 2019, 第 2 作者25(14): 4271-4279, http://dx.doi.org/10.1158/1078-0432.CCR-18-3065.[62] Ma, Xiaoke, Dong, Di, Wang, Quan. Community Detection in Multi-Layer Networks Using Joint Nonnegative Matrix Factorization. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING[J]. 2019, 第 2 作者31(2): 273-286, http://ir.ia.ac.cn/handle/173211/25343.[63] Zhu, Yongbei, Man, Chuntao, Gong, Lixin, Dong, Di, Yu, Xinyi, Wang, Shuo, Fang, Mengjie, Wang, Siwen, Fang, Xiangming, Chen, Xuzhu, Tian, Jie. A deep learning radiomics model for preoperative grading in meningioma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 第 4 作者116: 128-134, http://ir.ia.ac.cn/handle/173211/24380.[64] Liu, Yaou, Dong, Di, Zhang, Liwen, Zang, Yali, Duan, Yunyun, Qiu, Xiaolu, Huang, Jing, Dong, Huiqing, Barkhof, Frederik, Hu, Chaoen, Fang, Mengjie, Tian, Jie, Li, Kuncheng. Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. EUROPEAN RADIOLOGY[J]. 2019, 第 2 作者29(9): 4670-4677, https://www.webofscience.com/wos/woscc/full-record/WOS:000478873300015.[65] Fang Mengjie, Dong Di, Sun Ruijia, Fan Li, Sun Yingshi, Liu Shiyuan, Tian Jie, Mori K, Hahn HK. Using multi-task learning to improve diagnostic performance of convolutional neural networks. MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS. 2019, 第 2 作者10950: [66] Li, Wuchao, Zhang, Liwen, Tian, Chong, Song, Hui, Fang, Mengjie, Hu, Chaoen, Zang, Yali, Cao, Ying, Dai, Shiyuan, Wang, Fang, Dong, Di, Wang, Rongpin, Tian, Jie. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection. EUROPEAN RADIOLOGY[J]. 2019, 第 11 作者29(6): 3079-3089, http://ir.ia.ac.cn/handle/173211/24583.[67] Han, Lu, Zhu, Yongbei, Liu, Zhenyu, Yu, Tao, He, Cuiju, Jiang, Wenyan, Kan, Yangyang, Dong, Di, Tian, Jie, Luo, Yahong. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. EUROPEAN RADIOLOGY[J]. 2019, 第 8 作者 通讯作者 29(7): 3820-3829, http://ir.ia.ac.cn/handle/173211/24392.[68] Wang, Fei, Zhang, Bin, Wu, Xiangjun, Liu, Lizhi, Fang, Jin, Chen, Qiuying, Li, Minmin, Chen, Zhuozhi, Li, Yueyue, Dong, Di, Tian, Jie, Zhang, Shuixing. Radiomic Nomogram Improves Preoperative T Category Accuracy in Locally Advanced Laryngeal Carcinoma. FRONTIERS IN ONCOLOGY[J]. 2019, 第 10 作者 通讯作者 9: https://doaj.org/article/410a7729c4e9458980d13885dc3afb99.[69] Chen, Wujie, Wang, Siwen, Dong, Di, Gao, Xuning, Zhou, Kefeng, Li, Jiaying, Lv, Bin, Li, Hailin, Wu, Xiangjun, Fang, Mengjie, Tian, Jie, Xu, Maosheng. Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics. FRONTIERS IN ONCOLOGY[J]. 2019, 第 3 作者9: [70] Dong, D, Tang, L, Li, Z Y, Fang, MJ, Gao, JB, Shan, XH, Ying, XJ, Sun, YS, Fu, J, Wang, XX, Li, LM, Li, ZH, Zhang, DF, Zhang, Y, Li, ZM, Shan, F, Bu, ZD, Tian, J, Ji, JF. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. ANNALSOFONCOLOGY[J]. 2019, 30(3): 431-438, http://dx.doi.org/10.1093/annonc/mdz001.[71] Kan, Yangyang, Dong, Di, Zhang, Yuchen, Jiang, Wenyan, Zhao, Nannan, Han, Lu, Fang, Mengjie, Zang, Yali, Hu, Chaoen, Tian, Jie, Li, Chunming, Luo, Yahong. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2019, 第 2 作者49(1): 304-310, http://ir.ia.ac.cn/handle/173211/25657.[72] Wang, Bei, Li, Min, Ma, He, Han, Fangfang, Wang, Yan, Zhao, Shunying, Liu, Zhimin, Yu, Tong, Tian, Jie, Dong, Di, Peng, Yun. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC MEDICAL IMAGING[J]. 2019, 第 10 作者 通讯作者 19(1): http://dx.doi.org/10.1186/s12880-019-0355-z.[73] Chen, Bin, Zhong, Lianzhen, Dong, Di, Zheng, Jianjun, Fang, Mengjie, Yu, Chunyao, Dai, Qi, Zhang, Liwen, Tian, Jie, Lu, Wei, Jin, Yinhua. Computed Tomography Radiomic Nomogram for Preoperative Prediction of Extrathyroidal Extension in Papillary Thyroid Carcinoma. FRONTIERS IN ONCOLOGY[J]. 2019, 第 3 作者9: https://doaj.org/article/d6e9ff5045844314911ffe3d4815765f.[74] Chunwang Yuan, Zhenchang Wang, Dongsheng Gu, Jie Tian, Peng Zhao, Jingwei Wei, Xiaozhen Yang, Xiaohan Hao, Di Dong, Ning He, Yu Sun, Wenfeng Gao, Jiliang Feng. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. CANCER IMAGING[J]. 2019, 第 9 作者19(1): 1-12, http://ir.ia.ac.cn/handle/173211/24458.[75] Wang, Chao, Li, Hailin, Jiaerken, Yeerfan, Huang, Peiyu, Sun, Lifeng, Dong, Fei, Huang, Yajing, Dong, Di, Tian, Jie, Zhang, Minming. Building CT Radiomics-Based Models for Preoperatively Predicting Malignant Potential and Mitotic Count of Gastrointestinal Stromal Tumors. TRANSLATIONAL ONCOLOGY[J]. 2019, 第 8 作者 通讯作者 12(9): 1229-1236, http://dx.doi.org/10.1016/j.tranon.2019.06.005.[76] Fan, Li, Fang, MengJie, Li, ZhaoBin, Tu, WenTing, Wang, ShengPing, Chen, WuFei, Tian, Jie, Dong, Di, Liu, ShiYuan. Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. EUROPEAN RADIOLOGY[J]. 2019, 第 8 作者 通讯作者 29(2): 889-897, http://ir.ia.ac.cn/handle/173211/25645.[77] Zhang, Lu, Dong, Di, Li, Hailin, Tian, Jie, Ouyang, Fusheng, Mo, Xiaokai, Zhang, Bin, Luo, Xiaoning, Lian, Zhouyang, Pei, Shufang, Dong, Yuhao, Huang, Wenhui, Liang, Changhong, Liu, Jing, Zhang, Shuixing. Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: A retrospective cohort study. EBIOMEDICINE[J]. 2019, 第 2 作者40: 327-335, http://ir.ia.ac.cn/handle/173211/25002.[78] Ma, Xiaoxiao, Zhang, Liwen, Huang, Dehui, Lyu, Jinhao, Fang, Mengjie, Hu, Jianxing, Zang, Yali, Zhang, Dekang, Shao, Hang, Ma, Lin, Tian, Jie, Dong, Di, Lou, Xin. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2019, 第 12 作者 通讯作者 49(4): 1113-1121, http://ir.ia.ac.cn/handle/173211/24974.[79] Fu, Sirui, Wei, Jingwei, Zhang, Jie, Dong, Di, Song, Jiangdian, Li, Yong, Duan, Chongyang, Zhang, Shuaitong, Li, Xiaoqun, Gu, Dongsheng, Chen, Xudong, Hao, Xiaohan, He, Xiaofeng, Yan, Jianfeng, Liu, Zhenyu, Tian, Jie, Lu, Ligong. Selection Between Liver Resection Versus Transarterial Chemoembolization in Hepatocellular Carcinoma: A Multicenter Study. CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY[J]. 2019, 第 4 作者10(8): http://dx.doi.org/10.14309/ctg.0000000000000070.[80] Min, Xiangde, Li, Min, Dong, Di, Feng, Zhaoyan, Zhang, Peipei, Ke, Zan, You, Huijuan, Han, Fangfang, Ma, He, Tian, Jie, Wang, Liang. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 第 3 作者115: 16-21, http://ir.ia.ac.cn/handle/173211/24569.[81] Zhang, Lu, Zhou, Hongyu, Gu, Dongsheng, Tian, Jie, Zhang, Bin, Dong, Di, Mo, Xiaokai, Liu, Jing, Luo, Xiaoning, Pei, Shufang, Dong, Yuhao, Huang, Wenhui, Chen, Qiuyin, Liang, Changhong, Lian, Zhouyang, Zhang, Shuixing. Radiomic Nomogram: Pretreatment Evaluation of Local Recurrence in Nasopharyngeal Carcinoma based on MR Imaging. JOURNAL OF CANCER[J]. 2019, 第 6 作者10(18): 4217-4225, http://dx.doi.org/10.7150/jca.33345.[82] Xu, Xiaojuan, Li, Hailin, Wang, Siwen, Fang, Mengjie, Zhong, Lianzhen, Fan, Wenwen, Dong, Di, Tian, Jie, Zhao, Xinming. Multiplanar MRI-Based Predictive Model for Preoperative Assessment of Lymph Node Metastasis in Endometrial Cancer. FRONTIERS IN ONCOLOGY[J]. 2019, 第 7 作者 通讯作者 9: http://dx.doi.org/10.3389/fonc.2019.01007.[83] Wang, Shuo, Shi, Jingyun, Ye, Zhaoxiang, Dong, Di, Yu, Dongdong, Zhou, Mu, Liu, Ying, Gevaert, Olivier, Wang, Kun, Zhu, Yongbei, Zhou, Hongyu, Liu, Zhenyu, Tian, Jie. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. EUROPEAN RESPIRATORY JOURNAL[J]. 2019, 第 4 作者53(3): http://ir.ia.ac.cn/handle/173211/23571.[84] Han Yuqi, Xie Zhen, Zang Yali, Zhang Shuaitong, Gu Dongsheng, Wei Jingwei, Li Chao, Chen Hongyan, Du Jiang, Dong Di, Tian Jie, Zhou Dabiao, Mori K, Hahn HK. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS. 2019, 第 11 作者10950: [85] Di Dong. Predicting EGFR Mutation Status in Lung Adenocarcinoma on CT Image Using Deep Learning. European Respiratory Journal (共同第一作者). 2019, 第 1 作者[86] 任继亮, 袁瑛, 董迪, 施奕倩, 陶晓峰. 术前表观扩散系数图纹理分析预测舌和口底鳞状细胞癌组织学分级的价值. 中华放射学杂志[J]. 2019, 第 3 作者53(4): 281-285, http://lib.cqvip.com/Qikan/Article/Detail?id=7001883801.[87] Liu, Zhenyu, Wang, Shuo, Dong, Di, Wei, Jingwei, Fang, Cheng, Zhou, Xuezhi, Sun, Kai, Li, Longfei, Li, Bo, Wang, Meiyun, Tian, Jie. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. THERANOSTICS[J]. 2019, 第 3 作者9(5): 1303-1322, http://ir.ia.ac.cn/handle/173211/23573.[88] Wei, Jingwei, Yang, Guoqiang, Hao, Xiaohan, Gu, Dongsheng, Tan, Yan, Wang, Xiaochun, Dong, Di, Zhang, Shuaitong, Wang, Le, Zhang, Hui, Tian, Jie. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. EUROPEAN RADIOLOGY[J]. 2019, 第 7 作者29(2): 877-888, [89] Lu, Wei, Zhong, Lianzhen, Dong, Di, Fang, Mengjie, Dai, Qi, Leng, Shaoyi, Zhang, Liwen, Sun, Wei, Tian, Jie, Zheng, Jianjun, Jin, Yinhua. Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 第 3 作者118: 231-238, http://dx.doi.org/10.1016/j.ejrad.2019.07.018.[90] Xu, Min, Fang, Mengjie, Zou, Jian, Yang, Shudong, Yu, Dongdong, Zhong, Lianzhen, Hu, Chaoen, Zang, Yali, Di, Dong, Tian, Jie, Fang, Xiangming. Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 第 9 作者 通讯作者 114: 38-44, http://ir.ia.ac.cn/handle/173211/24912.[91] Li, Zhicong, Li, Hailin, Wang, Shiyu, Dong, Di, Yin, Fangfang, Chen, An, Wang, Siwen, Zhao, Guangming, Fang, Mengjie, Tian, Jie, Wu, Sufang, Wang, Han. MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2019, 第 4 作者49(5): 1420-1426, http://ir.ia.ac.cn/handle/173211/24926.[92] Tan, Yan, Zhang, Shuaitong, Wei, Jingwei, Dong, Di, Wang, Xiaochun, Yang, Guoqiang, Tian, Jie, Zhang, Hui. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. EUROPEAN RADIOLOGY[J]. 2019, 第 4 作者29(7): 3325-3337, http://ir.ia.ac.cn/handle/173211/24414.[93] Yang, Lei, Dong, Di, Fang, Mengjie, Zhu, Yongbei, Zang, Yali, Liu, Zhenyu, Zhang, Hongmei, Ying, Jianming, Zhao, Xinming, Tian, Jie. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?. EUROPEAN RADIOLOGY[J]. 2018, 第 2 作者 通讯作者 28(5): 2058-2067, https://www.webofscience.com/wos/woscc/full-record/WOS:000429104200030.[94] Zhang, Shuaitong, Song, Guidong, Zang, Yali, Jia, Jian, Wang, Chao, Li, Chuzhong, Tian, Jie, Dong, Di, Zhang, Yazhuo. Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. EUROPEAN RADIOLOGY[J]. 2018, 第 8 作者28(9): 3692-3701, http://dx.doi.org/10.1007/s00330-017-5180-6.[95] Zhang, Liwen, Chen, Bojiang, Liu, Xia, Song, Jiangdian, Fang, Mengjie, Hu, Chaoen, Dong, Di, Li, Weimin, Tian, Jie. Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer. TRANSLATIONAL ONCOLOGY[J]. 2018, 第 7 作者 通讯作者 11(1): 94-101, http://dx.doi.org/10.1016/j.tranon.2017.10.012.[96] Li, Jing, Fang, Mengjie, Wang, Rui, Dong, Di, Tian, Jie, Liang, Pan, Liu, Jie, Gao, Jianbo. Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer. EUROPEAN RADIOLOGY[J]. 2018, 第 4 作者28(12): 5241-5249, http://ir.ia.ac.cn/handle/173211/25723.[97] Meng, Yankai, Zhang, Yuchen, Dong, Di, Li, Chunming, Liang, Xiao, Zhang, Chongda, Wan, Lijuan, Zhao, Xinming, Xu, Kai, Zhou, Chunwu, Tian, Jie, Zhang, Hongmei. Novel Radiomic Signature as a Prognostic Biomarker for Locally Advanced Rectal Cancer. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2018, 第 3 作者48(3): 605-614, [98] Huang, Yanqi, He, Lan, Dong, Di, Yang, Caiyun, Liang, Cuishan, Chen, Xin, Ma, Zelan, Huang, Xiaomei, Yao, Su, Liang, Changhong, Tian, Jie, Liu, Zaiyi. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model. CHINESE JOURNAL OF CANCER RESEARCH[J]. 2018, 第 3 作者30(1): 40-+, http://lib.cqvip.com/Qikan/Article/Detail?id=90726589504849564849484853.[99] Jie Tian. Can CT-Based Radiomic Signature Predict KRAS/NRAS/BRAF Mutations in Colorectal Cancer?. European Radiology. 2018, [100] Wei, Wei, Wang, Ke, Tian, Kaibing, Liu, Zhenyu, Wang, Liang, Zhang, Junting, Tang, Zhenchao, Wang, Shuo, Dong, Di, Zang, Yali, Gao, Yuan, Wu, Zhen, Tian, Jie, IEEE. A Novel MRI-Based Radiomics Model for Predicting Recurrence in Chordoma. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). 2018, 第 9 作者139-142, [101] Chen Xi, Zhu Yongbei, Zhou Hongyu, Tang Zhenchao, Wei Wei, Dong Di, Tian Jie, Wang Meiyun, Wang Shuo, Liu Zhenyu. Unsupervised Deep Learning Features for Lung Cancer Overall Survival Analysis. 2018, 第 6 作者http://ir.ia.ac.cn/handle/173211/23575.[102] Chen, Xin, Fang, Mengjie, Dong, Di, Wei, Xinhua, Liu, Lingling, Xu, Xiangdong, Jiang, Xinqing, Tian, Jie, Liu, Zaiyi. A Radiomics Signature in Preoperative Predicting Degree of Tumor Differentiation in Patients with Non-small Cell Lung Cancer. ACADEMIC RADIOLOGY[J]. 2018, 第 3 作者25(12): 1548-1555, http://dx.doi.org/10.1016/j.acra.2018.02.019.[103] Ren, Jiliang, Tian, Jie, Yuan, Ying, Dong, Di, Li, Xiaoxia, Shi, Yiqian, Tao, Xiaofeng. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2018, 第 4 作者106: 1-6, http://dx.doi.org/10.1016/j.ejrad.2018.07.002.[104] Liu, Zhenyu, Wang, Yinyan, Liu, Xing, Du, Yang, Tang, Zhenchao, Wang, Kai, Wei, Jingwei, Dong, Di, Zang, Yali, Dai, Jianping, Jiang, Tao, Tian, Jie. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NEUROIMAGE-CLINICAL[J]. 2018, 第 8 作者19(19): 271-278, http://ir.ia.ac.cn/handle/173211/23184.[105] Zhou, Hongyu, Dong, Di, Chen, Bojiang, Fang, Mengjie, Cheng, Yue, Gan, Yuncun, Zhang, Rui, Zhang, Liwen, Zang, Yali, Liu, Zhenyu, Zheng, Hairong, Li, Weimin, Tian, Jie. Diagnosis of Distant Metastasis of Lung Cancer: Based on Clinical and Radiomic Features. TRANSLATIONAL ONCOLOGY[J]. 2018, 第 2 作者11(1): 31-36, https://doaj.org/article/17b1d6b609534215b9418a6e7ee8399f.[106] Cheng, Sainan, Fang, Mengjie, Cui, Chen, Chen, Xiuyu, Yin, Gang, Prasad, Sanjay K, Dong, Di, Tian, Jie, Zhao, Shihua. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. EUROPEAN RADIOLOGY[J]. 2018, 第 7 作者 通讯作者 28(11): 4615-4624, https://www.webofscience.com/wos/woscc/full-record/WOS:000446542300016.[107] 孟闫凯, 张雨晨, 张翀达, 万丽娟, 张红梅, 董迪, 赵心明, 徐凯, 李纯明, 周纯武. 对比MRI平扫、增强图像的影像组学标签对直肠癌生存期的预测价值. 中华放射学杂志[J]. 2018, 第 6 作者52(5): 349-355, http://lib.cqvip.com/Qikan/Article/Detail?id=675303902.[108] Zhu, Xinzhong, Dong, Di, Chen, Zhendong, Fang, Mengjie, Zhang, Liwen, Song, Jiangdian, Yu, Dongdong, Zang, Yali, Liu, Zhenyu, Shi, Jingyun, Tian, Jie. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. EUROPEAN RADIOLOGY[J]. 2018, 第 2 作者 通讯作者 28(7): 2772-2778, https://www.webofscience.com/wos/woscc/full-record/WOS:000434251800008.[109] Song, Jiangdian, Shi, Jingyun, Dong, Di, Fang, Mengjie, Zhong, Wenzhao, Wang, Kun, Wu, Ning, Huang, Yanqi, Liu, Zhenyu, Cheng, Yue, Gan, Yuncui, Zhou, Yongzhao, Zhou, Ping, Chen, Bojiang, Liang, Changhong, Liu, Zaiyi, Li, Weimin, Tian, Jie. A New Approach to Predict Progression-free Survival in Stage IV EGFR-mutant NSCLC Patients with EGFR-TKI Therapy. CLINICAL CANCER RESEARCH[J]. 2018, 第 3 作者24(15): 3583-3592, http://dx.doi.org/10.1158/1078-0432.CCR-17-2507.[110] Wei, Jingwei, Gu, Dongsheng, Dong, Di, Zhang, Shuaitong, Jin, Yushen, Tian, Jie. Preoperative prediction of microvascular invasion in HCC using radiomics on multisequence gadoxetic acid-enhanced MR images. CANCER RESEARCH[J]. 2018, 第 3 作者78(13): http://ir.ia.ac.cn/handle/173211/24388.[111] Han, Yuqi, Xie, Zhen, Zang, Yali, Zhang, Shuaitong, Gu, Dongsheng, Zhou, Mu, Gevaert, Olivier, Wei, Jingwei, Li, Chao, Chen, Hongyan, Du, Jiang, Liu, Zhenyu, Dong, Di, Tian, Jie, Zhou, Dabiao. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. JOURNAL OF NEURO-ONCOLOGY[J]. 2018, 第 13 作者 通讯作者 140(2): 297-306, http://ir.ia.ac.cn/handle/173211/25721.[112] Wang, Chao, Li, Meng, Liu, Xia, Liu, Zaiyi, Zang, Yali, Liu, Zhenyu, Dong, Di, Chang, Changhong, Tian, Jie, IEEE. Semi-automated Enhanced Breast Tumor Segmentation for CT Image. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). 2017, 第 11 作者648-651, [113] Tian Jie, Wang Shuo, Zhou Mu, Gevaert Olivier, Tang Zhenchao, Dong Di, Liu Zhenyu. A Multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017, 第 6 作者http://ir.ia.ac.cn/handle/173211/23574.[114] Zhong Wenzhao, Dong Di, Tian Jie, Liu Zaiyi, Song Jiangdian, Zang Yali, Li Weimin, Shi Jingyun. Development and validation of a radiomics nomogram for progression-free survival prediction in stage IV EGFR-mutant non-small cell lung cancer. SPIE MEDICAL IMAGING 2017. 2017, 第 2 作者http://ir.ia.ac.cn/handle/173211/12494.[115] Liu, Muhan, Guo, Hongbo, Liu, Hongbo, Zhang, Zeyu, Chi, Chongwei, Hui, Hui, Dong, Di, Hu, Zhenhua, Tian, Jie. In vivo pentamodal tomographic imaging for small animals. BIOMEDICAL OPTICS EXPRESS[J]. 2017, 第 7 作者8(3): 1356-1371, http://dx.doi.org/10.1364/BOE.8.001356.[116] Ma, Zelan, Fang, Mengjie, Huang, Yanqi, He, Lan, Chen, Xin, Liang, Cuishan, Huang, Xiaomei, Cheng, Zixuan, Dong, Di, Liang, Changhong, Xie, Jiajun, Tian, Jie, Liu, Zaiyi. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2017, 第 9 作者91(2017): 142-147, http://www.corc.org.cn/handle/1471x/2182005.[117] 范丽, 方梦捷, 董迪, 涂文婷, 望云, 李琼, 萧毅, 田捷, 刘士远. 影像组学对磨玻璃结节型肺腺癌病理亚型的预测效能. 中华放射学杂志[J]. 2017, 第 3 作者51(12): 912-917, http://lib.cqvip.com/Qikan/Article/Detail?id=674141276.[118] Shi Jingyun, Yu Dongdong, Zang Yali, Dong Di, Zhou Mu, Gevaert Olivier, Tian Jie. Developing a Radiomics Framework for Classifying Non-Small Cell Lung Carcinoma Subtypes. SPIE MEDICAL IMAGING 2017. 2017, 第 4 作者http://ir.ia.ac.cn/handle/173211/12493.[119] Wang, Shuo, Zhou, Mu, Gevaert, Olivier, Tang, Zhenchao, Dong, Di, Liu, Zhenyu, Tian, Jie, IEEE. A Multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). 2017, 第 11 作者1752-1755, [120] Jie Tian. Radiomics of Multiparametric MRI for Pretreatment Prediction of Progression-Free Survival in Advanced Nasopharyngeal Carcinoma. CLINICAL CANCER RESEARCH (共同第一作者). 2017, [121] Tian Jie, Hui Hui, Wang Shuo, Dong Di, Liu Xia, Yang Xin, Hu Chaoen. Brain vessels segmentation for light-sheet microscopy image using convolutional neural networks. SPIE DIGITAL LIBRARY. 2017, 第 4 作者http://ir.ia.ac.cn/handle/173211/12265.[122] Zhang, Bin, Tian, Jie, Dong, Di, Gu, Dongsheng, Dong, Yuhao, Zhang, Lu, Lian, Zhouyang, Liu, Jing, Luo, Xiaoning, Pei, Shufang, Mo, Xiaokai, Huang, Wenhui, Ouyang, Fusheng, Guo, Baoliang, Liang, Long, Chen, Wenbo, Liang, Changhong, Zhang, Shuixing. Radiomics Features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. CLINICAL CANCER RESEARCH[J]. 2017, 第 3 作者23(15): 4259-4269, https://www.webofscience.com/wos/woscc/full-record/WOS:000406680300031.[123] Wang, Shuo, Zhou, Mu, Liu, Zaiyi, Liu, Zhenyu, Gu, Dongsheng, Zang, Yali, Dong, Di, Gevaert, Olivier, Tian, Jie. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. MEDICAL IMAGE ANALYSIS[J]. 2017, 第 7 作者40(40): 172-183, http://dx.doi.org/10.1016/j.media.2017.06.014.[124] Shen, Wei, Zhou, Mu, Yang, Feng, Yu, Dongdong, Dong, Di, Yang, Caiyun, Zang, Yali, Tian, Jie. Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. PATTERN RECOGNITION[J]. 2017, 第 5 作者61(61): 663-673, http://dx.doi.org/10.1016/j.patcog.2016.05.029.[125] Ma, Xiaoke, Dong, Di. Evolutionary Nonnegative Matrix Factorization Algorithms for Community Detection in Dynamic Networks. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING[J]. 2017, 第 2 作者29(5): 1045-1058, http://dx.doi.org/10.1109/TKDE.2017.2657752.[126] 张利文, 刘侠, 汪俊, 董迪, 宋江典, 臧亚丽, 田捷. 基于定量影像组学的肺肿瘤良恶性预测方法. 自动化学报[J]. 2017, 第 4 作者43(12): 2109-2114, http://www.aas.net.cn:80/cn/article/doi/10.16383/j.aas.2017.c160264.[127] 张利文, 方梦捷, 臧亚丽, 朱永北, 董迪, 刘侠, 田捷. 影像组学的发展与应用. 中华放射学杂志[J]. 2017, 第 5 作者51(1): 75-77, http://lib.cqvip.com/Qikan/Article/Detail?id=671270734.[128] Shen, Chen, Liu, Zhenyu, Guan, Min, Song, Jiangdian, Lian, Yucheng, Wang, Shuo, Tang, Zhenchao, Dong, Di, Kong, Lingfei, Wang, Meiyun, Shi, Dapeng, Tian, Jie. 2D and 3D CT Radiomics Features Prognostic Performance Comparison in Non-Small Cell Lung Cancer. TRANSLATIONAL ONCOLOGY[J]. 2017, 第 8 作者10(6): 886-894, https://doaj.org/article/2a087e380b7b48bda04d2f844a106a61.[129] Liang, Xiao, Zang, Yali, Dong, Di, Zhang, Liwen, Fang, Mengjie, Yang, Xin, Arranz, Alicia, Ripoll, Jorge, Hui, Hui, Tian, Jie. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS[J]. 2016, 第 3 作者21(10): http://dx.doi.org/10.1117/1.JBO.21.10.106005.[130] Song, Jiangdian, Liu, Zaiyi, Zhong, Wenzhao, Huang, Yanqi, Ma, Zelan, Dong, Di, Liang, Changhong, Tian, Jie. Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. SCIENTIFIC REPORTS[J]. 2016, 第 6 作者 通讯作者 6: [131] Liang Xiao, Dong Di, Hui Hui, Zhang Liwen, Fang Mengjie, Tian Jie, Farkas DL, Nicolau DV, Leif RC. Brain vascular image enhancement based on gradient adjust with split Bregman. IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES IX. 2016, 第 2 作者9711: [132] Fang, Mengjie, Dong, Di, Zeng, Chaoting, Liang, Xiao, Yang, Xin, Arranz, Alicia, Ripoll, Jorge, Hui, Hui, Tian, Jie. Polarization-sensitive optical projection tomography for muscle fiber imaging. SCIENTIFIC REPORTS[J]. 2016, 第 2 作者6: http://dx.doi.org/10.1038/srep19241.[133] Liang, Cuishan, Huang, Yanqi, He, Lan, Chen, Xin, Ma, Zelan, Dong, Di, Tian, Jie, Liang, Changhong, Liu, Zaiyi. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. ONCOTARGET[J]. 2016, 第 6 作者7(21): 31401-31412, http://dx.doi.org/10.18632/oncotarget.8919.[134] Song Jiangdian, Tian Jie, Liu Zaiyi, Zang Yali, Huang Yanqi, Dong Di. Association between Tumor Heterogeneity and Progression-free Survival in Non-small Cell Lung Cancer Patients with EGFR Mutations Undergoing Tyrosine Kinase Inhibitors Therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. 2016, 第 6 作者http://ir.ia.ac.cn/handle/173211/12477.[135] Wang Jun, Liu Xia, Dong Di, Song Jiangdian, Xu Min, Zang Yali, Tian Jie, Patton J, Barbieri R, Ji J, Jabbari E, Dokos S, Mukkamala R, Guiraud D, Jovanov E, Dhaher Y, Panescu D, Vangils M, Wheeler B, Dhawan AP. Prediction of Malignant and Benign of Lung Tumor using a Quantitative Radiomic Method. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). 2016, 第 3 作者1272-1275, [136] Song, Jiangdian, Dong, Di, Huang, Yanqi, Liu, Zaiyi, Tian, Jie, IEEE. ASSOCIATION BETWEEN TUMOR HETEROGENEITY AND OVERALL SURVIVAL IN PATIENTS WITH NON-SMALL CELL LUNG CANCER. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI). 2016, 第 2 作者1249-1252, [137] Ma, Xibo, Hui, Hui, Jin, Yushen, Dong, Di, Liang, Xiaolong, Yang, Xin, Tan, Ke, Dai, Zhifei, Cheng, Zhen, Tian, Jie. Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its in vivo bioluminescence tomographic evaluation. BIOMATERIALS[J]. 2016, 第 4 作者87(87): 46-56, http://dx.doi.org/10.1016/j.biomaterials.2016.02.007.[138] Yang Yujie, Dong Di, Shi Liangliang, Wang Jun, Hui Hui, Yang Xin, Tian Jie, Farkas DL, Nicolau DV, Nicolau RC. A preliminary study on a dual-modality OPT/micro-CT system. IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XIII. 2015, 第 2 作者9328: [139] Liangliang Shi, Di Dong, Yujie Yang, Jun Wang, Alicia Arranz, Jorge Ripoll, Jie Tian. Coherent noise remover for Optical Projection Tomography. SPIE MEDICAL IMAGING. 2015, 第 2 作者http://ir.ia.ac.cn/handle/173211/11165.[140] Shi, Liangliang, Dong, Di, Yang, Yujie, Wang, Jun, Arranz, Alicia, Ripoll, Jorge, Tian, Jie, Gimi, B, Molthen, RC. Coherent noise remover for Optical Projection Tomography. MEDICAL IMAGING 2015: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING. 2015, 第 2 作者9417: [141] Yujie Yang, Di Dong, Liangliang Shi, Jun Wang, Xin Yang, Jie Tian. Signal enhancement in Optical Projection Tomography via virtual High Dynamic Range imaging of single exposure. SPIE MEDICAL IMAGING. 2015, 第 2 作者http://ir.ia.ac.cn/handle/173211/11167.[142] Yang, Yujie, Dong, Di, Shi, Liangliang, Wang, Jun, Yang, Xin, Tian, Jie, Gimi, B, Molthen, RC. Signal enhancement in optical projection tomography via virtual high dynamic range imaging of single exposure. MEDICAL IMAGING 2015: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING. 2015, 第 2 作者9417: [143] Tian Jie, Dong Di, Mu Wei. A new Pansharp based method for PET/CT image fusion. INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI). 2014, 第 2 作者1140-1143, http://ir.ia.ac.cn/handle/173211/5496.[144] Guo, Jin, Yang, Yujie, Dong, Di, Shi, Liangliang, Hui, Hui, Xu, Min, Tian, Jie, Liu, Xia, IEEE. A projection selection method to improve image quality in optical projection tomography. 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). 2014, 第 3 作者206-209, [145] Dong, Di, Arranz, Alicia, Zhu, Shouping, Yang, Yujie, Shi, Liangliang, Wang, Jun, Shen, Chen, Tian, Jie, Ripoll, Jorge. Vertically scanned laser sheet microscopy. JOURNAL OF BIOMEDICAL OPTICS[J]. 2014, 第 1 作者19(10): 106001-1-106001-8, http://dx.doi.org/10.1117/1.JBO.19.10.106001.[146] Arranz, Alicia, Dong, Di, Zhu, Shouping, Savakis, Charalambos, Tian, Jie, Ripoll, Jorge. In-vivo Optical Tomography of Small Scattering Specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster. SCIENTIFIC REPORTS[J]. 2014, 第 2 作者4: https://www.webofscience.com/wos/woscc/full-record/WOS:000346268300005.[147] 郭进, 刘侠, 董迪, 朱守平, 杨鑫, 田捷. 活体光学投影断层成像系统与应用. 自动化学报[J]. 2013, 第 3 作者39(12): 2043-2050, http://www.aas.net.cn:80/cn/article/doi/10.3724/SP.J.1004.2013.02043.[148] Dong Di, Guo Jin, Yang Yujie, Shi Liangliang, Peng Dong, Liu Zhenyu, Ripoll Jorge, Tian Jie, IEEE. Analysis of the Rotational Center Location Method in Optical Projection Tomography. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). 2013, 第 1 作者3008-3011, [149] Dong, Di, Zhu, Shouping, Qin, Chenghu, Kumar, Varsha, Stein, Jens V, Oehler, Stephan, Savakis, Charalambos, Tian, Jie, Ripoll, Jorge. Automated Recovery of the Center of Rotation in Optical Projection Tomography in the Presence of Scattering. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2013, 第 1 作者 通讯作者 17(1): 198-204, http://dx.doi.org/10.1109/TITB.2012.2219588.[150] Arranz, Alicia, Dong, Di, Zhu, Shouping, Rudin, Markus, Tsatsanis, Christos, Tian, Jie, Ripoll, Jorge. Helical optical projection tomography. OPTICS EXPRESS[J]. 2013, 第 2 作者21(22): 25912-25925, http://dx.doi.org/10.1364/OE.21.025912.[151] Zhu, Shouping, Dong, Di, Birk, Udo Jochen, Rieckher, Matthias, Tavernarakis, Nektarios, Qu, Xiaochao, Liang, Jimin, Tian, Jie, Ripoll, Jorge. Automated Motion Correction for In Vivo Optical Projection Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING[J]. 2012, 第 2 作者31(7): 1358-1371, http://dx.doi.org/10.1109/TMI.2012.2188836.[152] Hui Hui, Jie Tian, Min Xu, Di Dong. A projection selection method to improve image quality in optical projection tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBS). 2012, 第 4 作者206 - 209, http://ir.ia.ac.cn/handle/173211/5495.[153] Tian Jie, Dong Di. New in vivo optical molecular imaging modalities. URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSIGASS). 2011, 第 2 作者http://ir.ia.ac.cn/handle/173211/5438.[154] Ma, Xibo, Tian, Jie, Qin, Chenghu, Yang, Xin, Zhang, Bo, Xue, Zhenwen, Zhang, Xing, Han, Dong, Dong, Di, Liu, Xueyan. Early detection of liver cancer based on bioluminescence tomography. APPLIED OPTICS[J]. 2011, 第 9 作者50(10): 1389-1395, http://www.irgrid.ac.cn/handle/1471x/975010.[155] Dong, Di, Tian, Jie, Dai, Yakang, Yan, Guorui, Yang, Fei, Wu, Ping. Unified reconstruction framework for multi-modal medical imaging. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY[J]. 2011, 第 1 作者19(1): 111-126, http://dx.doi.org/10.3233/XST-2010-0281.[156] Dai, Yakang, Tian, Jie, Dong, Di, Yan, Guorui, Zheng, Hairong. Real-Time Visualized Freehand 3D Ultrasound Reconstruction Based on GPU. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE[J]. 2010, 第 3 作者14(6): 1338-1345, http://www.irgrid.ac.cn/handle/1471x/975051.[157] Zheng Jian, Tian Jie, Dai Yakang, Zhang Xing, Dong Di, Xu Min, Dhooge J, McAleavey SA. Ultrasound-directed Robotic System for Thermal Ablation of Liver Tumors: a Preliminary Report. MEDICAL IMAGING 2010: ULTRASONIC IMAGING, TOMOGRAPHY, AND THERAPY. 2010, 第 5 作者7629: [158] Yan, Guorui, Tian, Jie, Zhu, Shouping, Qin, Chenghu, Dai, Yakang, Yang, Fei, Dong, Di, Wu, Ping. Fast Katsevich Algorithm Based on GPU for Helical Cone-Beam Computed Tomography. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE[J]. 2010, 第 7 作者14(4): 1053-1061, http://www.irgrid.ac.cn/handle/1471x/975018.[159] Hao Hu MD, Lixin Gong MS, Di Dong PhD, Liang Zhu MD, Min Wang MD, Jie He MD, Lei Shu MD, Yiling Cai MD, Shilun Cai MD, Wei Su MD, Yunshi Zhong MD, Cong Li BS, Yongbei Zhu MS, Mengjie Fang MS, Lianzhen Zhong BS, Xin Yang PhD, Pinghong Zhou MD, Jie Tian PhD. Identifying early gastric cancer under magnifying narrow-band images via deep learning: a multicenter study. GASTROINTESTINAL ENDOSCOPY. http://dx.doi.org/10.1016/j.gie.2020.11.014.[160] Lixin Gong MS, Min Wang MD, Lei Shu MD, Jie He MD, Bin Qin MD, Jiacheng Xu MD, Wei Su MD, Di Dong PhD, Hao Hu MD, Jie Tian PhD, Pinghong Zhou MD. Automatic Captioning of Early Gastric Cancer via Magnification Endoscopy with Narrow Band Imaging. GASTROINTESTINAL ENDOSCOPY. http://dx.doi.org/10.1016/j.gie.2022.07.019.