基本信息

李光元 男 博导 中国科学院深圳先进技术研究院
电子邮件: gy.li@siat.ac.cn
通信地址: 广东省深圳市南山区西丽大学城中科院深圳先进技术研究院光电中心
邮政编码:
电子邮件: gy.li@siat.ac.cn
通信地址: 广东省深圳市南山区西丽大学城中科院深圳先进技术研究院光电中心
邮政编码:
研究方向
超构表面光子器件,动态调控超构表面
招生信息
招生专业:来自物理、电子、通信、光学、电磁场与微波等专业
有较强的上进心和自我驱动力
招生专业
080300-光学工程
招生方向
微纳光学器件,太赫兹技术,光传感
教育背景
2004-09--2009-07 北京大学 通信与信息系统专业工学博士2000-09--2004-07 北京交通大学 光信息科学与技术专业理学学士
工作经历
工作简历
2018-02~现在, 中国科学院深圳先进技术研究院, 副研究员2015-08~2018-02,悉尼大学, 博士后研究员2012-11~2014-11,南洋理工大学, 博士后研究员2010-10~2012-09,北京大学, 博士后研究员2009-08~2010-07,云南大学, 讲师
社会兼职
2020-06-01-今,美国光学学会高级会员, 高级会员
2017-02-01-今,美国光学学会Spotlight on Optics组委会委员, Panel member
2017-02-01-今,美国光学学会Spotlight on Optics组委会委员, Panel member
专利与奖励
奖励信息
(1) 北京大学二零一二年度优秀博士后, 研究所(学校), 2012
出版信息
发表论文
[1] Fang, Xinyu, Xiong, Lei, Shi, Jianping, Ding, Hongwei, Li, Guangyuan. Narrow quadrupolar surface lattice resonances and band reversal in vertical metal-insulator-metal gratings. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2022, 55(2): [2] Fang, Xinyu, Xiong, Lei, Shi, Jianping, Li, Guangyuan. High-Q quadrupolar plasmonic lattice resonances in horizontal metal-insulator-metal gratings. OPTICS LETTERS[J]. 2021, 46(7): 1546-1549, https://www.webofscience.com/wos/woscc/full-record/WOS:000636612700010.[3] Wang, Qiang, Liu, Qiuhan, Xia, Ruicong, Zhang, Pengtao, Zhou, Hongbin, Zhao, Boyan, Li, Guangyuan. Automatic defect prediction in glass fiber reinforced polymer based on THz-TDS signal analysis with neural networks. INFRARED PHYSICS & TECHNOLOGYnull. 2021, 115: http://dx.doi.org/10.1016/j.infrared.2021.103673.[4] Gong, Jiang, Shi, Xingzhe, Lu, Yuanfu, Hu, Fangrong, Zong, Rong, Li, Guangyuan. Dynamically tunable triple-band terahertz perfect absorber based on graphene metasurface. SUPERLATTICES AND MICROSTRUCTURES[J]. 2021, 150: http://dx.doi.org/10.1016/j.spmi.2020.106797.[5] Xiong, Lei, Ding, Hongwei, Li, Guangyuan. Dynamically Switchable Multispectral Plasmon-Induced Transparency in Stretchable Metamaterials. PLASMONICS[J]. 2021, 16(2): 477-483, https://www.webofscience.com/wos/woscc/full-record/WOS:000584564900003.[6] Huang, Wenli, Luo, Xiaoqing, Lu, Yuanfu, Hu, Fangrong, Li, Guangyuan. Ultra-broadband terahertz bandpass filter with dynamically tunable attenuation based on a graphene-metal hybrid metasurface. APPLIED OPTICS[J]. 2021, 60(22): 6366-6370, http://dx.doi.org/10.1364/AO.431832.[7] Chen, Hao, Xiong, Lei, Hu, Fangrong, Xiang, Yuanjiang, Dai, Xiaoyu, Li, Guangyuan. Ultrasensitive and Tunable Sensor Based on Plasmon-Induced Transparency in a Black Phosphorus Metasurface. PLASMONICS[J]. 2021, 16(4): 1071-1077, http://dx.doi.org/10.1007/s11468-021-01374-0.[8] Luo, Xiaoqing, Hu, Fangrong, Li, Guangyuan. Dynamically reversible and strong circular dichroism based on Babinet-invertible chiral metasurfaces. OPTICS LETTERS[J]. 2021, 46(6): 1309-1312, https://www.webofscience.com/wos/woscc/full-record/WOS:000629271000030.[9] Shi, Xingzhe, Chen, Changshui, Liu, Songhao, Li, Guangyuan. Nonvolatile and reconfigurable tuning of surface lattice resonances using phase-change Ge2Sb2Te5 thin films. RESULTS IN PHYSICS[J]. 2021, 22: http://dx.doi.org/10.1016/j.rinp.2021.103897.[10] 陈名松, 潘璐璐, 鲁远甫, 佘荣斌, 李光元. 多波长皮肤光疗仪的设计. 桂林电子科技大学学报. 2020, 40(3): 173-177, http://lib.cqvip.com/Qikan/Article/Detail?id=7102925279.[11] Dong, Xiaoxiang, Luo, Xiaoqing, Zhou, Yixuan, Lu, Yuanfu, Hu, Fangrong, Xu, Xinlong, Li, Guangyuan. Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface. OPTICS EXPRESS[J]. 2020, 28(21): 30675-30685, http://dx.doi.org/10.1364/OE.405173.[12] Shi, Xingzhe, Chen, Changshui, Liu, Songhao, Li, Guangyuan. Nonvolatile, Reconfigurable and Narrowband Mid-Infrared Filter Based on Surface Lattice Resonance in Phase-Change Ge2Sb2Te5. NANOMATERIALS[J]. 2020, 10(12): http://dx.doi.org/10.3390/nano10122530.[13] Cheng, Cong, Lu, Yuanfu, Zhang, Dongbo, Ruan, Fangming, Li, Guangyuan. Gain enhancement of terahertz patch antennas by coating epsilon-near-zero metamaterials. SUPERLATTICES AND MICROSTRUCTURES[J]. 2020, 139: http://dx.doi.org/10.1016/j.spmi.2020.106390.[14] Shi, Xingzhe, Lu, Yuanfu, Chen, Changshui, Liu, Songhao, Li, Guangyuan. Ultra-broadband reflectors covering the entire visible regime based on cascaded high-index-contrast gratings. APPLIED PHYSICS B-LASERS AND OPTICS[J]. 2020, 126(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000588307600003.[15] She, Rongbin, Liu, Wenquan, Wei, Guanglu, Lu, Yuanfu, Li, Guangyuan. Terahertz Single-Pixel Imaging Improved by Using Silicon Wafer with SiO2 Passivation. APPLIED SCIENCES-BASEL[J]. 2020, 10(7): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000533356200226.[16] Wang, Qiang, Liu, Qiuhan, Xia, Ruicong, Li, Guangyuan, Gao, Jianguo, Zhou, Hongbin, Zhao, Boyan. Defect Depth Determination in Laser Infrared Thermography Based on LSTM-RNN. IEEE ACCESS[J]. 2020, 8: 153385-153393, https://doaj.org/article/dedfd2fda7054bfd958c91b91a839532.[17] 李光元. Design of broadband highly reflective subwavelength high-index-contrast gratings in the visible regime. OSA Continuum. 2020, [18] Luo, Juan, Shi, Xingzhe, Luo, Xiaoqing, Hu, Fangrong, Li, Guangyuan. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials. OPTICS EXPRESS[J]. 2020, 28(21): 30861-30870, http://dx.doi.org/10.1364/OE.406006.[19] Yang, Xiuhua, Xiong, Lei, Lu, Yuanfu, Li, Guangyuan. Exceptionally narrow plasmonic surface lattice resonances in gold nanohemisphere array. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2020, 53(46): https://www.webofscience.com/wos/woscc/full-record/WOS:000566180000001.[20] Fang, Beihua, Lu, Yuanfu, Yang, Linfeng, Li, Guangyuan, IEEE. On-demand design of nanophotonic gratings using artificial neural network. 2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)null. 2019, [21] Li, Guangyuan, Palomba, Stefano, de Sterke, C Martijn. Two-dimensional plasmonic waveguides for nanolasing and four-wave mixing. NEW JOURNAL OF PHYSICS[J]. 2019, 21(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000503455400004.[22] Li, Weiwei, Xiong, Lei, Li, Nianci, Pang, Shuo, Xu, Guoliang, Yi, Chenghan, Wang, Zhixun, Gu, Guoqiang, Li, Kaiwei, Li, Weimin, Wei, Lei, Li, Guangyuan, Yang, Chunlei, Chen, Ming. Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2019, 7(33): 10179-10186, https://www.webofscience.com/wos/woscc/full-record/WOS:000482555200003.[23] She, Rongbin, Liu, Wenquan, Lu, Yuanfu, Zhou, Zhisheng, Li, Guangyuan. Fourier single-pixel imaging in the terahertz regime. APPLIED PHYSICS LETTERS[J]. 2019, 115(2): [24] Cong Cheng, Wei Chen, Yuanfu Lu, Fangming Ruan, Guangyuan Li. Large Near-Field Enhancement in Terahertz Antennas by Using Hyperbolic Metamaterials with Hole Arrays. Applied Sciences[J]. 2019, 9(12): https://doaj.org/article/35b89488c7b64885bfdb0fbecddb6cb8.[25] Wenquan Liu, Yuanfu Lu, Rongbin She, Guanglu Wei, Guohua Jiao, Jiancheng Lv, Guangyuan Li. Thermal Analysis of Cornea Heated with Terahertz Radiation. Applied Sciences[J]. 2019, 9(5): https://doaj.org/article/8abe2cfdb6db4192bcf74ade37eb7bc6.[26] 陈名松, 潘璐璐, 鲁远甫, 李光元. Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures. 中国物理B:英文版[J]. 2019, 28(7): 269-272, http://lib.cqvip.com/Qikan/Article/Detail?id=7002529539.[27] Li, Gordon Han Ying, Li, Guangyuan. Necessary conditions for out-of-plane lattice plasmons in nanoparticle arrays. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2019, 36(4): 805-810, [28] Liu, Wenquan, Lu, Yuanfu, She, Rongbin, Wei, Guanglu, Jiao, Guohua, Lv, Jiancheng, Li, Guangyuan. Thermal Analysis of Cornea Heated with Terahertz Radiation. APPLIED SCIENCES-BASEL[J]. 2019, 9(5): [29] Chen, Mingsong, Pan, Lulu, Lu, Yuanfu, Li, Guangyuan. Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures. CHINESE PHYSICS B[J]. 2019, 28(7): http://lib.cqvip.com/Qikan/Article/Detail?id=7002529539.[30] Li Gordon Han Ying, Li Guangyuan. Necessary conditions for out-of-plane lattice plasmons in nanoparticle arrays. 2019, http://arxiv.org/abs/1812.01417.[31] Fang, Beihua, Lu, Yuanfu, Zhou, Zhisheng, Li, Zhihui, Yan, Yuwen, Yang, Linfeng, Jiao, Guohua, Li, Guangyuan. Classification of Genetically Identical Left and Right Irises Using a Convolutional Neural Network. ELECTRONICS[J]. 2019, 8(10): https://doaj.org/article/02dc553b12174a68b1aa69aba026ac98.[32] Yang, Xiuhua, Xiao, Gongli, Lu, Yuanfu, Li, Guangyuan. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. OPTICS EXPRESS[J]. 2019, 27(18): 25384-25394, [33] Shi, Xingzhe, Lu, Yuanfu, Chen, Changshui, Liu, Songhao, Li, Guangyuan, IEEE. Ultra-broadband Reflector based on Subwavelength All-dielectric Grating. 2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)null. 2019, [34] Wen, Xinglin, Li, Guangyuan, Gu, Chengyan, Zhao, Jiaxin, Wang, Shijie, Jiang, Chunping, Palomba, Stefano, de Sterke, C Martijn, Xiong, Qihua. Doubly Enhanced Second Harmonic Generation through Structural and Epsilon-near-Zero Resonances in TiN Nanostructures. ACS PHOTONICS[J]. 2018, 5(6): 2087-2093, http://ir.sinano.ac.cn/handle/332007/6056.[35] Li, Guangyuan, de Sterke, C Martijn, Palomba, Stefano. Fundamental Limitations to the Ultimate Kerr Nonlinear Performance of Plasmonic Waveguides. ACS PHOTONICS[J]. 2018, 5(3): 1034-1040, https://www.webofscience.com/wos/woscc/full-record/WOS:000428356400049.[36] Li, Guangyuan, Palomba, Stefano, de Sterke, C Martijn. A theory of waveguide design for plasmonic nanolasers. NANOSCALE[J]. 2018, 10(45): 21434-21440, http://ir.siat.ac.cn:8080/handle/172644/13495.[37] Li, Guangyuan, de Sterke, C Martijn, Palomba, Stefano. General analytic expression and numerical approach for the Kerr nonlinear coefficient of optical waveguides. OPTICS LETTERS[J]. 2017, 42(7): 1329-1332, https://www.webofscience.com/wos/woscc/full-record/WOS:000398161500035.[38] Diaz, F J, Li, Guangyuan, de Sterke, C Martijn, Kuhlmey, B T, Palomba, S. Kerr effect in hybrid plasmonic waveguides. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2016, 33(5): 957-962, https://www.webofscience.com/wos/woscc/full-record/WOS:000376243200020.[39] Li, Guangyuan, de Sterke, C Martijn, Palomba, Stefano. Figure of merit for Kerr nonlinear plasmonic waveguides. LASER & PHOTONICS REVIEWS[J]. 2016, 10(4): 639-646, https://www.webofscience.com/wos/woscc/full-record/WOS:000379958800009.[40] Li, Guangyuan, Liu, Xinfeng, Wang, Xingzhi, Yuan, Yanwen, Sum, Tze Chien, Xiong, Qihua. Purified plasmonic lasing with strong polarization selectivity by reflection. OPTICS EXPRESS[J]. 2015, 23(12): 15657-15669, https://www.webofscience.com/wos/woscc/full-record/WOS:000356902500053.[41] Wen, Xinglin, Li, Guangyuan, Zhang, Jun, Zhang, Qing, Peng, Bo, Wong, Lai Mun, Wang, Shijie, Xiong, Qihua. Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. NANOSCALE[J]. 2014, 6(1): 132-139, https://www.webofscience.com/wos/woscc/full-record/WOS:000328673000009.[42] Zhang, Qing, Li, Guangyuan, Liu, Xinfeng, Qian, Fang, Li, Yat, Sum, Tze Chien, Lieber, Charles M, Xiong, Qihua. A room temperature low-threshold ultraviolet plasmonic nanolaser. NATURE COMMUNICATIONS[J]. 2014, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000342984800009.[43] Xiao, Feng, Michel, David, Li, Guangyuan, Xu, Anshi, Alameh, Kamal. Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2014, 32(21): 4169-4173, https://www.webofscience.com/wos/woscc/full-record/WOS:000350552200026.[44] Li, Guangyuan, Xiong, Qihua. Scattering by abrupt discontinuities on photonic nanowires: closed-form expressions for domain reduction. OPTICS EXPRESS[J]. 2014, 22(21): 25137-25148, https://www.webofscience.com/wos/woscc/full-record/WOS:000344004600050.[45] Li, Guangyuan, Zhang, Jiasen. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period. SCIENTIFIC REPORTS[J]. 2014, 4: https://www.webofscience.com/wos/woscc/full-record/WOS:000339940900008.