基本信息

张恺   研究员   博导 

张江实验室

中国科学院上海高等研究院 

电子邮件: zhangkai@zjlab.ac.cn
通信地址: 上海市浦东新区海科路100号
邮政编码: 201210

研究领域

超导磁体技术及其在同步辐射光源、自由电子激光、高能粒子对撞机等大科学装置上的应用

1. 短周期超导波荡器技术

2. 高场超导加速器磁体技术

3. 高温超导技术及应用

​4. 新波荡器原理

涉及超导磁体电磁优化、机械结构设计及力学优化、失超保护分析与设计、高温超导大规模电磁计算、高温超导磁体电-磁-热-力多物理场耦合分析、低温和高温超导加速器磁体和波荡器系统的研制、磁场测量及垫补技术等。

招生信息


实验室与瑞士保罗谢尔研究所、英国剑桥大学、伦敦国王学院、European XFEL等世界一流研究机构保持紧密合作,鼓励和支持学生前往访问交流。


常年招收直博生、申请制博士生及联合培养硕士研究生。欢迎具有机械工程、过程装备与控制工程、电气工程、制冷及低温工程、物理学、力学、工程物理、核科学与技术、自动化控制等专业领域背景的学生报考。


招生专业
082703-核技术及应用
招生方向
超导加速器磁体技术
超导波荡器技术
高温超导应用

教育背景

2014-09--2018-06   中国科学院高能物理研究所   博士
2011-09--2014-06   中国科学院高能物理研究所   硕士
2007-09--2011-06   南京工业大学   本科

工作经历

   
工作简历
2024-09~现在, 中国科学院上海高等研究院, 博导
2023-07~现在, 中国科学院上海应用物理研究所, 博导
2022-11~现在, 张江实验室, 研究员
2018-10~2022-10,瑞士保罗谢尔研究所, 博士后
2016-10~2017-11,美国劳伦斯伯克利国家实验室, 访问学者
社会兼职
2022-07-30-今,Elsevier-Superconductivity青年编委,

专利与奖励

   
奖励信息
(1) 国家级海外高层次人才计划(青年), 一等奖, 国家级, 2022
(2) 上海市海外高层次人才计划(青年), 一等奖, 省级, 2022
(3) 中国科学院优秀博士学位论文, 一等奖, 部委级, 2019
(4) 北京市优秀毕业生, 一等奖, 省级, 2018
(5) 博士研究生国家奖学金, 一等奖, 部委级, 2016

出版信息


发表论文

[1]  Z. Chen, D. Wei, X. Cui, D. Zhou, K. Zhang* and Z. Zhao*, “Electromagnetic modeling of RE-Ba-Cu-O coils based superconducting planar undulator and study on its screening current induced field,” IEEE Trans. Appl. Supercond., vol. 35, no. 5, pp. 4100305, 2025

[2]  D. Wei, Z. Chen, X. Wang, D. Zhou, K. Zhang* and H. Deng*, “Mechanical stress analysis of RE-Ba-Cu-O bulk superconductors for the HTS undulator during assembly, cool down and field-cooled magnetization,” IEEE Trans. Appl. Supercond., vol. 35, no. 5, pp. 8400205, 2025

[3]  K. Zhang*, D. Wei, Z. Chen, C. Liu, Y. Tong, D. Zhou, C. Li, M. Calvi, A. Dennis, J. Durrell, H. Deng and Z. Zhao, “Progress in the development of a 50-period HTS undulator for SXFEL,” IEEE Trans. Appl. Supercond., vol. 35, no. 5, pp. 4100205, 2025

[4]  Z. Chen, M. Calvi, J. Durrell, C. Boffo, D. Wei, K. Zhang* and Z. Zhao*, “Recent progress in high-temperature superconducting undulators”, Superconductivity, vol. 12, pp. 100134, 2024 (封面文章)

[5]  M. Calvi*, A. Arsenault, X. Liang, T. Schmidt, A. R. Dennis, J. H. Durrell, C. Gafa, A. Sammut, N. Sammut, M. D. Ainslie, R. Kinjo, K. Zhang and S. Hellmann, “Experimental results of a YBCO bulk superconducting undulator magnetic optimization,” Phys. Rev. Accel. Beams, vol. 27, pp. 100702, 2024

[6]  X. Wang, X. Liu, D. Wei, Y. Shi, C. Cai, Y. Zhang*, K. Zhang and D. Zhou*, “High performance one-step grown half-moon shaped YBCO bulk superconductors,” Supercond. Sci. Technol., vol. 37, pp. 085022, 2024

[7]  K. Zhang*, “High field HTS electromagnet with direct-current supplied bulk superconductors: old dream turns into reality?” Supercond. Sci. Technol., vol. 37, pp. 070501, 2024 (邀请观点)

[8]  G. D’Auria et al, “The CompactLight design study,” Eur. Phys. J. Spec. Top., Vol. 233, pp. 1–208, 2024

[9]  Y. Huang*, Y. Zhai, Y. Liu, J. Chen, T. Meng, Z. Yao, J. Zhang, B. Zhang, K. Zhang and X. Sun, “Cryogenic tests of SHINE superconducting quadrupole magnets in the multifunction test facility,” IEEE Trans. Appl. Supercond., vol. 34, no. 5, pp. 9500905, 2024

[10]  J. Zhang, B. Zhang, Y. Zhu, Y. Feng, Y. Huang, Y. Zhai, D. Yuan, X. Sun, J. Wang, L. Gong, Y. Zhu, D. Bai, G. Chen, T. Wu, M. Zhang, P. Ma, C. Li, K. Zhang*, “Design, fabrication and performance test of SHINE superconducting quadrupole magnets,” IEEE Trans. Appl. Supercond., vol. 34, no. 5, pp. 4004905, 2024

[11]  D. Wei, M. Calvi, K. Zhang* and H. Deng*, “Electromagnetic design study of a 12-mm-period bulk high-temperature superconducting undulator,” IEEE Trans. Appl. Supercond., vol. 34, no. 5, pp. 4100705, 2024

[12]  M. Calvi*, S. Hellmann, E. Prat, T. Schmidt, K. Zhang, A. R. Dennis, J. H. Durrell and M. D. Ainslie, “GdBCO bulk superconducting helical undulator for x-ray free-electron lasers,” Phys. Rev. Research, vol. 5, pp. L032020, 2023

[13]  K. Zhang, A. Pirotta, X. Liang, S. Hellmann, M. Bartkowiak, T. Schmidt, A. Dennis, M. Ainslie, J. Durrell and M. Calvi*, “Record field in a 10 mm-period bulk high-temperature superconducting undulator,” Supercond. Sci. Technol., vol. 36, pp. 05LT01, 2023

[14]  M. Calvi*, X. Liang, E. Ferrari, A. Alarcon, E. Prat, S. Reiche, T. Schmidt, D, Voulot, K. Zhang and R. Ganter, “Versatile modulators for laser-based FEL seeding at SwissFEL,” J. Synchrotron Rad., Vol. 30, pp 276-83, 2023

[15]  S. Karabekyan et al, “The status of the SASE3 variable polarization project at the European XFEL,” IPAC2022, Bangkok, Thailand, TUPOPT014, 2022

[16]  K. Zhang*, “Understanding the current voltage characteristic in HTS wires and bulks is of continuing interest to the modelling community,” Supercond. Sci. Technol., vol. 35, pp. 060501, 2022 (邀请观点)

[17]  K. Zhang* and M. Calvi, “Review and prospects of world-wide superconducting undulator development for synchrotrons and FELs,” Supercond. Sci. Technol., vol. 35, pp. 093001, 2022 (邀请综述)

[18]  R. Kinjo*, M. Calvi, K. Zhang, S. Hellmann, X. Liang, T. Schmidt, M. D. Ainslie, A. R. Dennis and J. H. Durrell, “Inverse analysis of critical current density in a bulk high-temperature superconducting undulator,” Phys. Rev. Accel. Beams, vol. 24, pp. 043502, 2022

[19]  K. Zhang*, M. Ainslie*, M. Calvi, R. Kinjo and T. Schmidt, “Fully-staggered-array bulk Re-Ba-Cu-O short-period undulator: large-scale 3D electromagnetic modelling and design optimization using A-V and H-formulation methods,” Supercond. Sci. Technol., vol. 34, pp. 094002, 2021

[20]  K. Zhang*, S. Hellmann, M. Calvi, T. Schmidt and L. Brouwer, “Magnetization current simulation of high-temperature bulk superconductors using the ANSYS iterative algorithm method,” IEEE Trans. Appl. Supercond., vol. 31, no. 2, pp. 6800206, 2021

[21]  X. Liang*, M. Calvi, M. E. Couprie, R. Ganter, C. Kittel, N. Sammut, T. Schmidt and K. Zhang, “Analysis of the first magnetic results of the PSI APPLE X undulators in elliptical polarisation,” Nuclear Inst. and Methods in Physics Research A, vol. 987, pp. 164741, 2021

[22]  K. Zhang*, M. Ainslie, M. Calvi, S. Hellmann, R. Kinjo and T. Schmidt, “Fast and efficient critical state modeling of field-cooled bulk high-temperature superconductors using a backward computation method,” Supercond. Sci. Technol., vol. 33, pp. 114007, 2020

[23]  S. Hellmann*, M. Calvi, T. Schmidt and K. Zhang, “Numerical design optimization of short-period HTS staggered array undulators,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 4100705, 2020

[24]  K. Zhang*, S. Hellmann, M. Calvi and T. Schmidt, “Magnetization simulation of ReBCO tape stack with a large number of layers using the ANSYS A-V-A formulation,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 4700805, 2020

[25]  M. Calvi*, M. D. Ainslie, A. Dennis, J. H. Durrell, S. Hellmann, C. Kittel, D. A. Moseley, T. Schmidt, Y. Shi and K. Zhang, “A GdBCO bulk staggered array undulator,” Supercond. Sci. Technol., vol. 33, pp. 014004, 2019

[26]  CompactLight collaboration, “Status of the CompactLight design study,” 39th Free Electron Laser Conf., vol. 39 pp. 738-41, 2019

[27]  E. Ravaioli*, D. Davis, M. Marchevsky, G. L. Sabbi, T. Shen, A. Verweij and K. Zhang, “A new quench detection method for HTS magnets: stray-capacitance change monitoring,” Phys. Scr., vol. 95, pp. 015002, 2019

[28]  T. Shen*, E. Bosque, D. Davis, J. Jiang, M. White, K. Zhang, H. Higley, M. Turqueti, Y. Huang, H. Miao, U. Trociewitz, E. Hellstrom, J. Parrell, A. Hunt, S. Gourlay, S. Prestemon and D. Larbalestier, “Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000A/mm2,” Sci. Rep., vol. 9, pp. 10170, 2019

[29]  E. Kong, C. Wang, L. Wang, X. Wang, D. Cheng, K. Zhang, Y. Wang, Q. Peng and Q. Xu*, “Conceptual design study of iron-based superconducting dipole magnets for SPPC,” Int. J. Mod. Phys. A, vol. 13, no. 14, pp. 19400003, 2019

[30]  C. Wang, D. Cheng, K. Zhang, Y. Wang, E. Kong, Z. Zhang, S. Wei, L. Gong, Z. Zhang, Q. Peng, X. Yang, H. Liu, Y. Tan, T. Zhao, Y. Zhu, Y. Zhao, H. Liao, Z. Zhu, F. Chen and Q. Xu*, “Electromagnetic design, fabrication, and test of LPF1: a 10.2-T common-coil dipole magnet with graded coil configuration,” IEEE Trans. Appl. Supercond., vol. 29, no. 7, pp. 4003807, 2019

[31]  K. Zhang, Y. Wang, C. Wang, D. Cheng, E. Kong, Q. Peng, Z. Zhang, S. Wei, X. Yang and Q. Xu*, “Mechanical design, assembly, and test of LPF1: a 10.2 T Nb3Sn common-coil dipole magnet with graded coil configuration,” IEEE Trans. Appl. Supercond., vol. 29, no. 4, pp. 4000108, 2019

[32]  K. Zhang, H. Higley, L. Ye, S. Gourlay, S. Prestemon, T. Shen*, E. Bosque, C. English, J. Jiang, Y. Kim, J. Lu, U. Trociewitz, E. Hellstrom and D. Larbalestier, “Tripled critical current in racetrack coils made of Bi-2212 Rutherford cables with overpressure processing and leakage control,” Supercond. Sci. Technol., vol. 31, pp. 105009, 2018

[33]  Z. Hou*, Z. Zhu, K. Zhang, L. Zhao, M. Wang, J. Zhou, P. Li, X. Hu, Y. Zhang and Z. Wang, “Excitation characteristics of magnets impregnated with paraffin wax,” Cryogenics, vol. 94, pp. 22-25, 2018

[34]  D. Cheng, T. Salmi, Q. Xu*, Q. Peng, C. Wang, Y. Wang, E. Kong and K. Zhang, “Quench simulation results for a 12-T twin-aperture dipole magnet,” Cryogenics, vol. 92, pp. 13-19, 2018

[35]  E. Ravaioli*, M. Martchevskii, G. Sabbi, T. Shen and K. Zhang, “Quench detection utilizing stray capacitances,” IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 4702805, 2018

[36]  K. Zhang, Q. Xu*, Z. Zhu, G. Sabbi, T. Shen, Y. Wang, C. Wang, E. Kong, D. Cheng and Q. Peng, “3D mechanical design and stress analysis of 20 T common-coil dipole magnet for SPPC,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 4004105, 2018

[37]  C. Wang, E. Kong, D. Cheng, Y. Wang, K. Zhang and Q. Xu*, “Electromagnetic design of a 12 T twin-aperture dipole magnet,” Int. J. Mod. Phys. A, vol. 32, no. 34, pp. 1746008, 2017

[38]  K. Zhang, Q. Xu*, Z. Zhu, C. Wang, Y. Wang, D. Cheng, E. Kong, L. Zhao, M. Wang, F. Ning, W. Zhao and Q. Peng, “Investigation of adopting shrink-fit multilayered aluminum shell in high-field common-coil accelerator dipole magnet,” IEEE Trans. Appl. Supercond., vol. 27, no. 8, pp. 4004504, 2017

[39]  K. Zhang, C. Wang, Q. Xu*, Z. Zhu, Y. Wang, D. Cheng, E. Kong, F. Ning, M. Wang, L. Zhao, W. Zhao and Q. Peng, “Mechanical design of FECD1 at IHEP: a 12-T hybrid common-coil dipole magnet,” IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 4001605, 2017

[40]  C. Wang, K. Zhang, Q. Xu*, Z. Zhu, Y. Wang, E. Kong, D. Cheng, F. Ning, G. Zhang, L. Zhao, M. Wang, W. Zhao, W. Yao, Z. Hou and Q. Peng, “Electromagnetic design study of a 20-T cos-theta 2-in-1 dipole magnet for high-energy accelerators,” IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 4000905, 2017

[41]  C. Wang, K. Zhang and Q. Xu*, “R&D steps of a 12-T common coil dipole magnet for SPPC pre-study,” Int. J. Mod. Phys. A, vol. 31, no. 33, pp. 1644018, 2016

[42]  K. Zhang, Q. Xu*, Z. Zhu, C. Wang, Y. Hu, F. Ning, L. Zhao, M. Wang, W. Yao, G. Zhang and Z. Hou, “2-D mechanical design study of a 20-T two-in-one common-coil dipole magnet for high-energy accelerators,” IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 4003705, 2016

[43]  F. Ning*, Z. Zhu, L. Geng, Y. Hu, Z. Liu, K. Zhang, C. Wang, M. Wang, L. Zhao, H. Yang, Z. Hou, Q. Xu, G. Zhang, W. Yao and W. Zhao, “The development of HTS solenoid lens for electron microscope,” IEEE Trans. Appl. Supercond., vol. 26, no. 2, pp. 4600306, 2016

[44]  K. Zhang, Z. Zhu*, G. Zhang, Z. Dai, Z. Mu, M. Wang and L. Zhao, “Investigation of adopting Ti–15V–3Cr–3Sn–3Al tie rod to support the cold mass of superconducting magnet with strict alignment requirements,” IEEE Trans. Appl. Supercond., vol. 26, no. 2, pp. 4900306, 2016

[45]  Q. Xu*, K. Zhang, C. Wang, Y. Hu, Z. Hou, F. Ning, M. Wang, W. Yao, G. Zhang, L. Zhao, W. Zhao, Z. Zhu, F. Chen, W. Kang, Q. Li and Q. Peng, “20-T dipole magnet with common-coil configuration: main characteristics and challenges,” IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 4000404, 2016

[46]  K. Zhang, Z. Zhu*, L. Zhao, Z. Hou, M. Wang, G. Zhang, W. Yao, F. Ning, Z. Wang and X. Zhang, “Cold mass support structure design of MRI superconducting magnet developed by IHEP,” IEEE Trans. Appl. Supercond., vol. 25, no. 2, pp. 4400106, 2015

[47]  W. Yao*, Z. Zhu, Z. Chang, L. Zhao, Z. Dai, K. Zhang, F. Ning, G. Zhang, Z. Hou, M. Wang, X. Zhang and Z. Wang, “Development of an eddy-current separation equipment with high gradient superconducting magnet,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 3700304, 2015

[48]  Q. Xu*, F. Chen, L. Huo, Z. Hou, W. Kang, Q. Li, F. Ning, Q. Peng, D. Wang, M. Wang, W. Yao, G. Zhang, K. Zhang, L. Zhao, W. Zhao and Z. Zhu, “Magnetic design study of the high-field common-coil dipole magnet for high-energy accelerators,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 4000905, 2015


科研活动

   
科研项目
( 1 ) 国家级海外高层次人才计划(青年)人才专项经费, 负责人, 研究所自主部署, 2023-07--2026-07
( 2 ) 上海硬X射线自由电子激光装置,超导四极铁子系统负责人, 负责人, 国家任务, 2018-04--2023-04
学术报告
(1)高温超导波荡器研究进展   超导技术及产业应用交流会,中国,合肥,邀请报告   2024-05-29
(2)超导波荡器技术在同步辐射光源和自由电子激光装置上的应用、回顾与展望   中国科学院物理研究所超导国家重点实验室学术报告,中国,北京,邀请报告   2024-01-26
(3)超导波荡器技术在同步辐射光源和自由电子激光装置上的应用:回顾与展望   第十七届全国超导学术研讨会,中国,西安,邀请报告   2023-10-24
(4)超导波荡器技术在同步辐射光源和自由电子激光装置上的应用:回顾与展望   第四届中国新材料产业发展大会,超导材料论坛,中国,温州,邀请报告   2023-10-10
(5)Development of HTS undulators at PSI   Insertion Devices for Future Light Sources Workshop (ID23),美国,芝加哥,邀请报告   2023-09-26
(6)Superconducting undulator development for synchrotrons and FELs   2023 Cryogenic Engineering Conference and International Cryogenic Materials Conference,美国,檀香山,邀请报告   2023-07-10
(7)Fast and efficient HTS modelling using ANSYS A-V formulation   7th International Workshop on Numerical Modelling of High Temperature Superconductors,法国,南锡,口头报告    2021-06-22
(8)HTS magnetization current simulation using ANSYS iterative algorithm method and user defined element   26th International Conference on Magnet Technology,加拿大,温哥华,墙报   2019-09-22
(9)3D mechanical design and analysis of 20-T twin-aperture common-coil accelerator dipole magnet   25th International Conference on Magnet Technology,荷兰,阿姆斯特丹,墙报   2017-08-27
(10)Subscale racetrack coil 2212 magnet - progresses and outlooks   US-MDP First General Meeting and Workshop,美国,纳帕,口头报告   2017-02-06
(11)超级质子对撞机(SPPC): 高场超导加速器二极磁体的结构设计与力学分析   第三届“核科学与技术”研究生学术论坛,中国,兰州,口头报告   2016-09-12
(12)2D mechanical design study of a 20-T two-in-one common-coil dipole magnet for high-energy accelerators   24th International Conference on Magnet Technology,韩国,首尔,口头报告   2015-10-18
(13)超级质子对撞机20T超导加速器二极磁体的力学分析与研究   第十二届全国低温工程大会,中国,南京,口头报告   2015-08-19
(14)Mechanical design Study of a 20 T common-coil dipole for SPPC    ICFA Mini-Workshop on High Field Magnets for PP Colliders,中国,上海,口头报告   2015-06-14