黄良锋  男  博导  中国科学院宁波材料技术与工程研究所
电子邮件: huangliangfeng@nimte.ac.cn
通信地址: 浙江省宁波市镇海区中官西路1219号
邮政编码: 315201

研究领域

课题组主页链接重点聚焦的研究内容为先进使役材料的理论计算与精准设计针对结构/功能材料在实际环境中的复杂服役问题,力争实现清晰理解微观机理”和“精准设计使役性能”的目的。利用高精度、高效率、多功能、多尺度的第一性原理计算方法,探索各类合金、氧化物、抗腐蚀/硬质/润滑涂层在高温和海洋等复杂、多变、苛刻服役环境下的微观过程和性能规律,提出可靠的材料设计原理。

招生信息

招生对象:博士研究生、硕士研究生、联合培养研究生。

专业要求:物理、化学、冶金、材料等相关专业。


招生专业
080501-材料物理与化学
0805Z1-腐蚀与防护
070205-凝聚态物理

科研履历

2018~至今: [国] 中国科学院宁波材料技术与工程研究所(研究员,博士生导师)

2015~2018:[美国] 西北大学-材料科学与工程系(博士后)

2012~2014:[德国] 马克斯-普朗克研究院-钢铁研究所(博士后)

2006~2012:[国] 中国科学院合肥物质科学研究院-固体物理研究所(博士研究生)

代表性研究论文

  1. Y. Hao, T.-Y. Sun, J.-T. Ye, L.-F. Huang*, L.-P. Wang*, Accurate simulation for 2D lubricating materials in realistic environments: from classical to quantum mechanical methods, Advanced Materials 36, 2312429 (2024).

  2. T.-Y. Sun, J.-T. Ye, G. Zhang*, H. Li, R. Qiu*, L.-F. Huang*, Environmental stability of actinide oxides mapped by integrated and accurate first-principles calculations, Journal of Physical Chemistry C 128, 8505 (2024). 

  3. L.-F. Huang, Y. Xie, K. Sieradzki, J.M. Rondinelli*, Elemental partitioning and corrosion resistance of Ni-Cr alloys revealed by accurate ab-initio thermodynamic and electrochemical calculationsnpj Materials Degradation 7, 94 (2023).

  4. G. Ma#, J. Ye#, M. Qin, T. Sun, W. Tan, Z. Fan, L.-F. Huang*, X. Xin*, Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysis for sustainable hydrogen production via overall water splittingNano Energy 115, 108679 (2023).

  5. Y. Hao, L. Wang*, L.-F. Huang*, Oxygen reduction reaction on MoS2: activity enhancement and biperiodic chemical trends induced by lanthanide dopantsNature Communications 14, 3256 (2023).

  6. Y. Jin, Q. He, G. Liu, Z. Gu, M. Wu, T. Sun, Z. Zhang*, L.-F. Huang*, X. Yao*, Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteriesAdvanced Materials 35, 2211047 (2023).

  7. K. Shi, A. Dutta, Y. Hao, M. Zhu, L. He, Y. Pan, X. Xin*, L.-F. Huang*, X. Yao*, J. Wu*, Electrochemical polishing: an effective strategy for eliminating Li dendritesAdvanced Functional Materials 32, 2203652 (2022).

  8. Y. Wu, T.-Y. Sun, T. Ge, W. Zhao*, L.-F. Huang*, Eliminating the galvanic corrosion effect of graphene coating by an accurate and rapid self-assembling defect healing approachAdvanced Functional Materials 32, 2110264 (2022).

  9. L.N. Walters, L.-F. Huang, J.M. Rondinelli*, A first-principles prediction of copper electrochemical oxidation and corrosion under multiple environmental factorsJournal of Physical Chemistry C 125, 14027-14038 (2021).

  10. R. Zhang, X. Li, F. Meng, J. Bi, S. Zhuang, S. Peng, J. Sun, X. Wang, L. Wu, J. Duan, H. Cao, Q. Zhang*, L. Gu, L.-F. Huang*, Y. Cao*, Wafer-scale epitaxy of flexible conductive nitride films with superior plasmonic and superconducting performanceACS Applied Materials & Interfaces 13, 60182-60191 (2021).

  11. N.Z. Koocher, L.-F. Huang, J.M. Rondinelli*, Negative thermal expansion in the Ruddlesden-Popper calcium titanatesPhysical Review Materials 5, 053601 (2021).

  12. Y. Hao, P.-L. Gong, L.-C. Xu*, J. Pu, L. Wang, L.-F. Huang*, Contrasting oxygen reduction reactions on zero- and one-dimensional defects of MoS2 for versatile electrochemical applicationsACS Applied Materials & Interfaces 11, 46327-46336 (2019).

  13. L.-F. Huang, J.R. Scully, J.M. Rondinelli*, Modelling corrosion with first-principles electrochemical phase diagramsAnnual Review of Materials Research 49, 53-77 (2019).

  14. L.-F. Huang, J.M. Rondinelli*, Reliable electrochemical phase diagrams of magnetic transition metals and their complex compounds from ab-initio high-throughput calculationsnpj Materials Degradation 3, 26 (2019).

  15. L.-F. Huang, N.Z. Koocher, M. Gu, J.M. Rondinelli*, Structure dependent phase stability and thermal expansion of Ruddlesden-Popper strontium titanatesChemistry of Materials 30, 7100-7110 (2018).

  16. L.-F. Huang, R.J. Santucci, M. Hutchinson, J.R. Scully, J.M. Rondinelli*, Improved electrochemical phase diagrams from theory and experiment: The Ni-water system and its complex compoundsJournal of Physical Chemistry C 121, 9782–9789 (2017).

  17. L.-F. Huang, X.Z. Lu, J.M. Rondinelli*, Tunable negative thermal expansion in layered perovskites from quasi-two-dimensional vibrationsPhysical Review Letters 117, 115901 (2016).

  18. L.-F. Huang, B. Grabowski*, J. Zhang, M.J. Lai, C.C. Tasan, S. Sandloebes, D. Raabe, J. Neugebauer, From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium-transition metal alloysActa Materialia 113, 311–319 (2016). 

  19. L.-F. Huang, P.L. Gong, Z. Zeng*, Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2Physical Review B 90, 045409 (2014).

科研活动

   
科研项目
( 1 ) 优异服役材料的机理探索和理论设计, 负责人, 研究所自主部署, 2018-12--2022-12
( 2 ) 复杂环境下优异服役材料的理论模拟和设计, 负责人, 地方任务, 2019-09--2024-08
( 3 ) Understanding Corrosion in Four Dimension (美国国防部-海军研究项目), 参与, 国家任务, 2014-05--2019-06
( 4 ) Adaptive nanostructures in next generation metallic materials (欧盟研究项目), 参与, 国家任务, 2012-02--2017-01
( 5 ) Multi-dimensional defect engineering of oxidation catalysts (美国/以色列双边合作项目), 参与, 国家任务, 2017-10--2019-09
( 6 ) 极端环境高可靠功能防护材料力-热-电化学耦合损伤理论与延寿研究, 参与, 国家任务, 2022-01--2025-12
( 7 ) 极端环境表面与界面基础研究发展战略调研, 参与, 国家任务, 2022-01--2022-12
( 8 ) 抗腐蚀二维涂层中表界面和缺陷效应微观机理的研究, 负责人, 地方任务, 2021-07--2023-06
( 9 ) 大气环境下UO2表面电化学吸附行为及其多因素耦合关系的第一性原理模拟, 负责人, 其他国际合作项目, 2022-01--2023-12
( 10 ) 二维涂层/金属体系在实际使役环境中的微观动力学行为和微结构调控原理的理论研究, 负责人, 国家任务, 2023-01--2026-12
( 11 ) 空间环境齿轮超低摩擦磨损固体润滑研究(子课题), 参与, 国家任务, 2022-12--2025-11
( 12 ) 摩擦磨损的本质与调控, 参与, 中国科学院计划, 2023-09--2028-08
( 13 ) 宁波市基础研究人才培养基地建设项目, 负责人, 研究所自主部署, 2023-04--2028-03
学术角色

(1) 国际学术期刊Metals编委成员 (腐蚀与防护部门) [web page]

(2) 国际学术期刊Surface Science and Technology编委成员 [web page]

(3) 特聘专家,中国机械工程学会-表面工程分会

(4) 全国研究生教育评估监测专家, 教育部

(5) 学会会员,中国腐蚀与防护学会

(6) 学会会员(终身),中国物理学会

(7) 学会会员,中国材料研究学会

(8) 学会会员,美国物理学会

国内外合作

我们和国内外许多实验/理论研究团队长期保持紧密的合作关系,比如中国、美国、德国、以色列等国家的许多知名高校和科研院所,具有较好的国际化基础我们擅长用精确高效的理论模拟方法来探索复杂材料体系和环境作用中的微观机理和性能规律,而这些问题也经常是无法通过常规实验途径来有效解决的。良好的理论-实验合作,不仅给实验工作解决了重要的微观科学问题,也培养了学生用先进理论技术解决实际问题的能力,还积累了我们在材料实际服役性能/机理方面的知识。