基本信息
马明  男  硕导  中国科学院深圳先进技术研究院
电子邮件: ming.ma@siat.ac.cn
通信地址: 深圳南山西丽大学城学苑大道1068号,中国科学院深圳先进技术研究院
邮政编码: 518055

研究领域

主要从事纳米材料、纳米工程领域的相关研究并应用于能源、环境、生物医学相关方向

招生信息

欢迎化学、物理、材料专业的同学报考

招生专业
070304-物理化学
招生方向
纳米工程,能源工程,物理化学
材料合成

教育背景

2012-09--2017-08   韩国成均馆大学   博士学位
2006-09--2010-07   山东大学化学与化工学院   学士学位

工作经历

   
工作简历
2018-07~现在, 中国科学院深圳先进技术研究院, 副研究员
2017-09~2018-06,香港科技大学, 博士后

专利与奖励

   
奖励信息
(1) 深圳市海外高层次C类人才, 市地级, 2018
(2) 国家优秀自费留学生奖学金, 国家级, 2016
专利成果
[1] 马明, 汪毅, 李蒋, 崔传艺, 宁德, 李伟民. 一种氧化锌纳米棒阵列光阳极及其制备方法. CN 202210216534.2, 2022-03-07.
[2] 陈冬冬, 郑雪, 张杰, 任超, 马明, 杨春雷. 一种蓝光光电二极管及其制备方法. CN 202111318305.3, 2021-11-09.
[3] 赵晨晨, 李伟民, 祁同庆, 王伟, 张琛, 周鸿飞, 冯叶, 李文杰, 马明, 杨春雷. 铜铟镓硒薄膜的制备方法、光电器件的制备方法. CN 202111244638.6, 2021-10-25.
[4] 祁同庆, 李伟民, 赵晨晨, 王伟, 张琛, 刘亚男, 冯叶, 李文杰, 马明, 宁德, 杨春雷. 柔性铜铟镓硒太阳能电池及其制备方法. CN 202111237544.6, 2021-10-22.
[5] 任超, 马明, 陈冬冬, 李蒋, 李伟民, 邵龑, 杨春雷. 一种在金属导电图形上电镀Pt的方法. CN 202110926683.3, 2021-08-12.
[6] 马明, 张闪闪, 李蒋, 李伟民, 张杰, 杨春雷. 钒酸铋光阳极及其制备方法、光电化学器件. CN 202110597660.2, 2021-05-31.
[7] 马明, 张闪闪, 王妍, 李蒋. 氧化亚铜纳米线光阴极及其制备方法、光电化学器件. CN: CN112708903A, 2021-04-27.
[8] 焦于璎, 李伟民, 杨春雷, 冯叶, 李文杰, 宁德, 郑雪, 马明. 一种CCZTSe短波红外探测器及其制备方法. CN 202110160361.2, 2021-02-05.
[9] 张闪闪, 马明. 一种构建Z型异质结光阳极的方法及Z型异质结光阳极. CN: CN112195483A, 2021-01-08.
[10] 王博博, 马明, 李江宇. 一种全分解水表面修饰的二氧化钼催化剂及其制备方法和用途. CN 201911265237.1, 2019-12-11.

出版信息

   
发表论文
[1] De Ning, Mingzhu Hu, Ming Ma, Zhongguo Wang, Zongpeng Wang, Quan Wen, Bi Du, Eyu Wang, Shengpeng Hu, Ming Chen, Chunlei Yang, Weimin Li. A novel energy-resolved radiation detector based on the optimized CIGS photoelectric absorption layer. Journal of Power Sources. 2022, 536: [2] Zhang, Shanshan, Xing, Zheng, Ma, Ming, Liu, Zhenghao, Tang, Wei, Kim, Sungsoon, Wu, Rong, Li, Jiangyu, Park, Jong Hyeok. Interfacial nitrogen modulated Z-scheme photoanode for solar water oxidation. JOURNAL OF POWER SOURCES[J]. 2022, 519: http://dx.doi.org/10.1016/j.jpowsour.2021.230784.
[3] Wang, Wei, Zhang, Chen, Hu, Bei, Su, Weiguo, Xu, Shuda, Ma, Ming, Feng, Ye, Li, Wenjie, Chen, Ming, Yang, Chunlei, Li, Weimin. Influence of alkali element post-deposition treatment on the performance of the CIGS solar cells on flexible stainless steel substrates. MATERIALS LETTERS[J]. 2021, 302: http://dx.doi.org/10.1016/j.matlet.2021.130410.
[4] Zhang, Chen, Qi, Tongqing, Wang, Wei, Zhao, Chenchen, Xu, Shuda, Ma, Ming, Feng, Ye, Li, Wenjie, Chen, Ming, Yang, Chunlei, Li, Weimin. High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer. SOLAR ENERGY[J]. 2021, 230: 1033-1039, http://dx.doi.org/10.1016/j.solener.2021.11.006.
[5] Oh, Cheoulwoo, Kim, Jiwon, Hwang, Yun Jeong, Ma, Ming, Park, Jong Hyeok. Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 283: http://dx.doi.org/10.1016/j.apcatb.2020.119653.
[6] Wang, Bobo, Zhang, Zhe, Zhang, Shanshan, Cao, Yuncheng, Su, Yong, Liu, Shude, Tang, Wei, Yu, Junxi, Ou, Yun, Xie, Shuhong, Li, Jiangyu, Ma, Ming. Surface excited MoO2 to master full water splitting. ELECTROCHIMICA ACTA[J]. 2020, 359: http://dx.doi.org/10.1016/j.electacta.2020.136929.
[7] 马明. Surface exited MoO2 to master full water splitting. Electrochimica Acta. 2020, [8] Su, Yong, Fu, Bi, Yuan, Guolong, Ma, Ming, Jin, Hongyun, Xie, Shuhong, Li, Jiangyu. Three-dimensional mesoporous gamma-Fe2O3@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries. NANOTECHNOLOGY[J]. 2020, 31(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000520991200001.
[9] Ma, Ming, Xing, Zheng, Zhu, Xi, Jiang, Peng, Wang, Xiao, Lin, He, An, Yiming, Su, Haibin, Yang, Shihe. Interface modulation of BiVO4 based photoanode with Bi(III)Bi(V)O-4 for enhanced solar water splitting. JOURNAL OF CATALYSIS[J]. 2020, 391: 513-521, http://dx.doi.org/10.1016/j.jcat.2020.09.012.
[10] 马明. Three dimensional mesoporous γ-Fe2O3@ carbon nanofiber network as high performance anode material for lithium-and sodium-ion batteries. Nanotechnology. 2020, [11] Cao, Yuncheng, Xing, Zheng, Wang, Bobo, Tang, Wei, Wu, Rong, Li, Jiangyu, Ma, Ming. Surface Engineering of WO3/BiVO4 to Boost Solar Water-Splitting. CATALYSTS[J]. 2020, 10(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000546007000127.
[12] Liu, Haiyang, Wu, Rong, Zhang, Hongyan, Ma, Ming. Microwave Hydrothermal Synthesis of 1T@2H-MoS2 as an Excellent Photocatalyst. CHEMCATCHEM[J]. 2020, 12(3): 893-902, https://www.webofscience.com/wos/woscc/full-record/WOS:000503046600001.
[13] Shah, Md Selim Arif Sher, Oh, Cheoulwoo, Park, Hyesung, Hwang, Yun Jeong, Ma, Ming, Park, Jong Hyeok. Catalytic Oxidation of Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and Photocatalytic Conversion at Low Temperatures. ADVANCED SCIENCEnull. 2020, 7(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000585878700001.
[14] Ma, Ming, Oh, Cheoulwoo, Kim, Jiwon, Moon, Jun Hyuk, Park, Jong Hyeok. Electrochemical CH4 oxidation into acids and ketones on ZrO2:NiCo2O4 quasi-solid solution nanowire catalyst. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2019, 259: http://dx.doi.org/10.1016/j.apcatb.2019.118095.
[15] An, Yiming, Long, Xia, Ma, Ming, Hu, Jue, Lin, He, Zhou, Dan, Xing, Zheng, Huang, Bolong, Yang, Shihe. One-Step Controllable Synthesis of Catalytic Ni4Mo/MoOx/Cu Nanointerfaces for Highly Efficient Water Reduction. ADVANCED ENERGY MATERIALS[J]. 2019, 9(41): [16] Yu, Junxi, Huang, Boyuan, Li, Aolin, Duan, Shanshan, Jin, Hongyun, Ma, Ming, Ou, Yun, Xie, Shuhong, Liu, Yunya, Li, Jiangyu. Resolving local dynamics of dual ions at the nanoscale in electrochemically active materials. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104160.
[17] Liu, Shude, Yin, Ying, Ni, Dixing, Hui, Kwan San, Ma, Ming, Park, Sewon, Hui, Kwun Nam, Ouyang, ChuYing, Jun, Seong Chan. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. ENERGY STORAGE MATERIALS[J]. 2019, 22: 384-396, http://dx.doi.org/10.1016/j.ensm.2019.02.014.
[18] Xing, Zheng, Hu, Jun, Ma, Ming, Lin, He, An, Yiming, Liu, Zhenghao, Zhang, Yi, Li, Jiangyu, Yang, Shihe. From One to Two: In Situ Construction of an Ultrathin 2D-2D Closely Bonded Heterojunction from a Single-Phase Monolayer Nanosheet. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2019, 141(50): 19715-19727, https://www.webofscience.com/wos/woscc/full-record/WOS:000503917800030.
[19] Rauf, Ali, Ma, Ming, Kim, Sungsoon, Shah, Md Selim Arif Sher, Chung, ChanHwa, Park, Jong Hyeok, Yoo, Pil J. Mediator- and co-catalyst-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting. NANOSCALE[J]. 2018, 10(6): 3026-3036, http://dx.doi.org/10.1039/c7nr07952d.
[20] Lin, He, Long, Xia, Hu, Jue, Qiu, Yongcai, Wang, Zilong, Ma, Ming, An, Yiming, Yang, Shihe. Exploratory Study of ZnxPbOy Photoelectrodes for Unassisted Overall Solar Water Splitting. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(13): 10918-10926, https://www.webofscience.com/wos/woscc/full-record/WOS:000429625400035.
[21] Jin, Bingjun, Jung, Eunji, Ma, Ming, Kim, Sungsoon, Zhang, Kan, Kim, Jin Il, Son, Yongkeun, Park, Jong Hyeok. Solution-processed yolk-shell-shaped WO3/BiVO4 heterojunction photoelectrodes for efficient solar water splitting. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(6): 2585-2592, https://www.webofscience.com/wos/woscc/full-record/WOS:000424466300019.
[22] Shi, Xinjian, Cai, Lili, Choi, Il Yong, Ma, Ming, Zhang, Kan, Zhao, Jiheng, Kim, Jung Kyu, Kim, Jong Kyu, Zheng, Xiaolin, Park, Jong Hyeok. Epitaxial growth of WO3 nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(40): 19542-19546, http://ir.siat.ac.cn:8080/handle/172644/14409.
[23] Liu, Shude, Sankar, Kalimuthu Vijaya, Kundu, Aniruddha, Ma, Ming, Kwon, JangYeon, Jun, Seong Chan. Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(26): 21829-21838, https://www.webofscience.com/wos/woscc/full-record/WOS:000405159100027.
[24] Ma, Ming, Jin, Bing Jun, Li, Ping, Jung, Myung Sun, Kim, Jin Il, Cho, Yoonjun, Kim, Sungsoon, Moon, Jun Hyuk, Park, Jong Hyeok. Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. ADVANCED SCIENCE[J]. 2017, 4(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000418385800004.
[25] Zhang, Kan, Ravishankar, Sandheep, Ma, Ming, Veerappan, Ganapathy, Bisquert, Juan, FabregatSantiago, Francisco, Park, Jong Hyeok. Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. ADVANCED ENERGY MATERIALS[J]. 2017, 7(3): http://dx.doi.org/10.1002/aenm.201600923.
[26] Shim, Jaeho, Kim, Jung Kyu, Lee, Kyu Seung, Lee, ChangLyoul, Ma, Ming, Choi, Won Kook, Hwang, Jun Yeon, Yang, Hee Yeon, Angadi, Basavaraj, Park, Jong Hyeok, Yu, Kyoungsik, Son, Dong Ick. A facile chemical synthesis of ZnO@multilayer graphene nanoparticles with fast charge separation and enhanced performance for application in solar energy conversion. NANO ENERGY[J]. 2016, 25: 9-17, http://dx.doi.org/10.1016/j.nanoen.2016.04.031.
[27] 马明. Solution Processable Formation of a Few Nanometers thick-Disordered Overlayer on Surface of Open-Ended TiO2 Nanotube. Chemical Communications. 2016, [28] Zhang, Kan, Wang, Luyang, Sheng, Xiaowei, Ma, Ming, Jung, Myung Sun, Kim, Wanjung, Lee, Hyoyoung, Park, Jong Hyeok. Tunable Bandgap Energy and Promotion of H2O2 Oxidation for Overall Water Splitting from Carbon Nitride Nanowire Bundles. ADVANCED ENERGY MATERIALS[J]. 2016, 6(11): [29] Xinjian Shi, Hokyeong Jeong, Seung Jae Oh, Ming Ma, Kan Zhang, Jeong Kwon, In Taek Choi, Il Yong Choi, Hwan Kyu Kim, Jong Kyu Kim, Jong Hyeok Park. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. NATURE COMMUNICATIONS[J]. 2016, 7(1): https://doaj.org/article/cae67fcdc7c640ab9d65dd9f597f3031.
[30] Ma, Ming, Zhang, Kan, Li, Ping, Jung, Myung Sun, Jeong, Myung Jin, Park, Jong Hyeok. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2016, 55(39): 11819-11823, https://www.webofscience.com/wos/woscc/full-record/WOS:000384713100017.
[31] Veerappan, Ganapathy, SunyoungYoo, Zhang, Kan, Ma, Ming, Kang, Byoungwoo, Park, Jong Hyeok. High-reversible capacity of Perovskite BaSnO3/rGO composite for Lithium-Ion Battery Anodes. ELECTROCHIMICA ACTA[J]. 2016, 214: 31-37, http://dx.doi.org/10.1016/j.electacta.2016.07.076.
[32] Zhang, Kan, Kim, Jung Kyu, Ma, Ming, Yim, Sang Youp, Lee, ChangLyoul, Shin, Hyunjung, Park, Jong Hyeok. Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H-2 Generation. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(25): 4527-4534, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000379905800011.
[33] Zhang, Kan, Li, Ping, Ma, Ming, Park, Jong Hyeok. Core-Shelled Low-Oxidation State Oxides@Reduced Graphene Oxides Cubes via Pressurized Reduction for Highly Stable Lithium Ion Storage. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(17): 2959-2965, https://www.webofscience.com/wos/woscc/full-record/WOS:000377587800019.
[34] Zhang, Kan, Ma, Ming, Li, Ping, Wang, Dong Hwan, Park, Jong Hyeok. Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. ADVANCED ENERGY MATERIALSnull. 2016, 6(15): [35] Zhang, Kan, Wang, Luyang, Kim, Jung Kyu, Ma, Ming, Veerappan, Ganapathy, Lee, ChangLyoul, Kong, Kijeong, Lee, Hyoyoung, Park, Jong Hyeok. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2016, 9(2): 499-503, https://www.webofscience.com/wos/woscc/full-record/WOS:000369744500016.
[36] Ma, Ming, Shi, Xinjian, Zhang, Kan, Kwon, Soonwoo, Li, Ping, Kim, Jung Kyu, Thanh Tran Phu, Yi, GiRa, Park, Jong Hyeok. A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation. NANOSCALE[J]. 2016, 8(6): 3474-3481, https://www.webofscience.com/wos/woscc/full-record/WOS:000369908900037.
[37] Zhang, Kan, Li, Ping, Ma, Ming, Park, Jong Hyeok. Designed seamless outer surface: Application for high voltage LiNi0.5Mn1.5O4 cathode with excellent cycling stability. JOURNAL OF POWER SOURCES[J]. 2016, 336: 307-315, http://dx.doi.org/10.1016/j.jpowsour.2016.10.074.
[38] Zhang, Kan, Kim, Wanjung, Ma, Ming, Shi, Xinjian, Park, Jong Hyeok. Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(9): 4803-4810, https://www.webofscience.com/wos/woscc/full-record/WOS:000349997000007.
[39] Shi, Xinjian, Cai, Lili, Ma, Ming, Zheng, Xiaolin, Park, Jong Hyeok. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting. CHEMSUSCHEMnull. 2015, 8(19): 3192-3203, https://www.webofscience.com/wos/woscc/full-record/WOS:000362729800001.
[40] Shi, Xinjian, Zhang, Kan, Shin, Kahee, Ma, Ming, Kwon, Jeong, Choi, In Taek, Kim, Jung Kyu, Kim, Hwan Kyu, Wang, Dong Hwan, Park, Jong Hyeok. Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. NANO ENERGY[J]. 2015, 13: 182-191, http://dx.doi.org/10.1016/j.nanoen.2015.02.018.
[41] Ma, Ming, Kim, Jung Kyu, Zhang, Kan, Shi, Xinjian, Kim, Sung June, Moon, Jun Hyuk, Park, Jong Hyeok. Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. CHEMISTRY OF MATERIALS[J]. 2014, 26(19): 5592-5597, https://www.webofscience.com/wos/woscc/full-record/WOS:000343195600024.
[42] Zhang, Kan, Kim, HwanJin, Lee, JeongTaik, Chang, GeeWoo, Shi, Xinjian, Kim, Wanjung, Ma, Ming, Kong, Kijeong, Choi, JaeMan, Song, MinSang, Park, Jong Hyeok. Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in High-Rate Lithium-Ion Batteries and the Hydrogen Evolution Reaction. CHEMSUSCHEM[J]. 2014, 7(9): 2489-2495, https://www.webofscience.com/wos/woscc/full-record/WOS:000342813300019.

科研活动