Ming MA

Birthday: 1989/02/10        Male

Associate professor

Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, Guangdong, China


Google Scholar:

Research Areas

Photoelectrochemical   (PEC) Water Splitting

-              Inverse   opal structure of WO3/BiVO4 was designed by using the   PS spheres, with the swelling and shrinking properties. The PEC performance   was analyzed and the 3D heterojunction system was further investigated.

-              Photoandoe   materials, like WO3 and TiO2, were post modified by a   Li-EDA (Li metal dissolved in ethylenediamine) solution. Then surface   materials will be disordered and improve the surface oxygen evolution ability   as well as the bulk electrochemical properties.  

C1   project: methane oxidation and CO2 reduction

-              Methane   gas can be converted to propanol through the electrochemical oxidation with   selected nanomaterials and the conversion efficiency could reach 60%.

-              Based   on the electrochemical oxidation, photocatalytic materials could be applied   to do the photo-oxidation of the methane gas to form liquid fuel.

-              The   CO2 reduction by electrochemical and photo-assistant method is   also being prepared.


Sep.   2006 - Jul. 2010

BS in Chemistry

College   of Chemistry and Chemical Engineering

Shandong   University, Jinan, China

Sep.   2012 - Jul. 2017

PhD in Engineering,   Supervisor: Prof. Jong Hyeok Park

SKKU   Advanced Institute of Nano Technology (SAINT),

Sungkyunkwan   University (SKKU), Suwon, Korea



Work Experience

Sep.   2017 - Jun. 2018 

Postdoctoral fellow, Supervisor: Prof. Shihe Yang

Chemistry   department

Hong   Kong University of Science and Technology (HKUST)

Jul.   2018 - Now

Associate   professor

Shenzhen   Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS)


As first and corresponding authors (#equal contribution, *corresponding author)

1.       M. Ma#, Z. Xing#, X. Zhu, P. Jiang, X. Wang, H. Lin, Y. An, H. Su*, S. Yang*, “Interface modulation of BiVO4 based photoanode with Bi(III)Bi(V)O4 for enhanced solar water splitting”, Journal of Catalysis 2020, 391, 513-521.

2.       B. Wang#, Z. Zhang#, S. Zhang, Y. Cao, Y. Su, S. Liu, W. Tang, J. Yu, Y. Ou, S. Xie*, J. Li*, M. Ma*, “Surface exited MoO2 to master full water splitting”, Electrochimica Acta 2020, 359, 136929.

3.       Y. Cao#, Z. Xing#, B. Wang, W. Tang, R. Wu*, J. Li*, M. Ma*, “Surface Engineering of WO3/BiVO4 to Boost Solar Water Splitting”, Catalysts 2020, 10, 556.

4.       Z. Xing#, J. Hu#, M. Ma#, H. Lin, Y. An, Z. Liu, Y. Zhang, J. Li*, S. Yang*, “From one to two: In Situ Construction of an Ultrathin 2D-2D Closely Bonded Heterojunction from a Single-Phase Monolayer Nanosheet”, J. Am. Chem. Soc. 2019, 141, 19715.

5.       H. Liu, R. Wu*, H. Zhang, M. Ma*, “Microwave Hydrothermal Synthesis of 1T@2H MoS2 as an Excellent Photocatalyst”, ChemCatChem 2019, 12, 893-902.

6.       M. Ma#*, C. Oh#, J. Kim#, J. H. Moon, J. H. Park*, “Electrochemical CH4 oxidation into acids and ketones on ZrO2:NiCo2O4 quasi-solid solution nanowire catalyst”, Appl. Catal. B-Environ. 2019, 259, 118095.

7.       M. Ma, B. J. Jin, P. Li, M. S. Jung, J. I. Kim, Y. Cho, S. Kim, J. H. Moon, J. H. Park*, “Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature,” Advanced Science 2017, 4, 1700379.

8.       M. Ma#, K. Zhang#, P. Li, M. S. Jung, M. J. Jeong, and J. H. Park* “Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation,” Angew. Chem. Int. Ed. 2016, 55, 11819-11823.

9.       K. Zhang#, M. Ma#, P. Li, D. H. Wang, and J. H. Park*, “Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis,” Adv. Energy Mater. 2016, DOI: 10.1002/aenm.201600602.

10.    M. Ma, X. Shi, K. Zhang, S. Kwon, P. Li, J. K. Kim, T. Tran Phu, G. Yi, and J. H. Park* “A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation,” Nanoscale, 2016, 8, 3474-3481.

11.    S. W. Kwon#, M Ma#, M. J. Jeong, K. Zhang, S. J. Kim, J. H. Park*, “Solution Processable Formation of a Few Nanometers thick-Disordered Overlayer on Surface of Open-Ended TiO2 Nanotube,” Chem. Commun. 2016, 52, 13807-13810.

12.    M. Ma#, J. K. Kim#, K. Zhang, X. Shi, S. J. Kim, J. H. Moon, and J. H. Park*, “Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction,” Chem. Mater. 2014, 26, 5592-5597.

As co-worker

1.       Y. Su, B. Fu, G. Yuan, M. Ma, H. Jin, S. Xie, J. Li, “Three-dimensional mesoporous γ-Fe2O3@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries,” Nanotechnology 2020, 31, 155401.

2.       J. Yu, B. Huang, A. Li, S. Duan, H. Jin, M. Ma, Y. Ou, S. Xie, Y. Liu, J. Li, “Resolving local dynamics of dual ions at the nanoscale in electrochemically active materials,” Nano Energy 2019, 66, 104160.

3.       Y. An, X. Long, M. Ma, J. Hu, H. Lin, D. Zhou, Z. Xing, B. Huang, S. Yang, “One-Step Controllable Synthesis of Catalytic Ni4Mo/MoOx/Cu Nanointerfaces for Highly Efficient Water Reduction,” Adv. Energ. Mater. 2019, 9, 1901454.

4.       S. Liu, Y. Yin, D. Ni, K. S. Hui, M. Ma, S. Park, K. N. Hui, C. Ouyang, S. C. Jun, “New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors,” Energy Storage Materials 2019, 22, 384-396.

5.       D. Zhou, X. Long, Y. An, H. Lin, Z. Xing, M. Ma, S. Yang, “(Keynote) One-Pot Synthesis of Manganese Oxides and Cobalt Phosphides Nanohybrids with Abundant Hetero-Interfaces in Amorphous Matrix for Efficient Hydrogen Evolution in Alkaline Solution,” ECS Transactions 2019, 88, 381-397.

6.       X. Shi, L. Cai, I. Y. Choi, M. Ma, K. Zhang, J. Zhao, J. K. Kim, J. K. Kim, X. Zheng, J. H. Park, “Epitaxial growth of WO3 nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity,” J. Mater. Chem. A 2018,6, 19542-19546.

7.       H. Lin, X. Long, J. Hu, Y. Qiu, Z. Wang, M. Ma, Y. An, S. Yang, “Exploratory Study of ZnxPbOy Photoelectrodes for Unassisted Overall Solar Water Splitting,” ACS Appl. Mater. Interfaces 2018, 10, 13, 10918-10926.

8.       B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. I. Kim, Y. Son, J. H. Park, “Solution-processed yolk-shell-shaped WO3/BiVO4 heterojunction photoelectrodes for efficient solar water splitting,” J. Mater. Chem. A 2018, 6, 2585-2592.

9.       A. Rauf, M. Ma, S. Kim, M. S. A. Sher Shah, C. Chung, J. H. Park, P. J. Yoo, “Mediator- and co-catalyst-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting,” Nanoscale 2018, 10, 3026-3036.

10.    K. Zhang, S. Ravishankar, M. Ma, G. Veerappan, J. Bisquert, F. Fabregat-Santiago, J. H. Park, “Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer,” Adv. Energy Mater. 2017, 7, 1600923.

11.    S. Liu, K. V. Sankar, A. Kundu, M. Ma, J. Kwon, S. C. Jun, “Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors,” ACS Appl. Mater. Interfaces 2017, 9, 21829-21838.

12.    K. Zhang, P. Li, M. Ma, and J. H. Park “Core-Shelled Low-Oxidation State Oxides@Reduced Graphene Oxides Cubes via Pressurized Reduction for Highly Stable Lithium Ion Storage,” Adv. Funct. Mater. 2016, 26, 2959-2965.

13.    G. Veerappan, S. Yoo, K. Zhang, M. Ma, B. Kang, J. H. Park, “High-reversible capacity of Perovskite BaSnO3/rGO composite for Lithium-Ion Battery Anodes,” Elelctrochim. Acta 2016, 214, 21-37.

14.    K. Zhang, P. Li, M. Ma, J. H. Park, “Designed seamless outer surface: Application for high voltage LiNi0.5Mn1.5O4 cathode with excellent cycling stability,” J. Power Sources 2016, 336, 307-315.

15.    K. Zhang, L. Wang, X. Sheng, M. Ma, M. S. Jung, W. Kim, H. Lee, and J. H. Park “Tunable Bandgap Energy and Promotion of H2O2 Oxidation for Overall Water Splitting from Carbon Nitride Nanowire Bundles,” Adv. Energy Mater. 2016: DOI: 10.1002/aenm.201502352.

16.    X. Shi, H. Jeong, S. J. Oh, M. Ma, K. Zhang, J. Kwon, I. T. Choi, I. Y. Choi, H. K. Kim, J. K. Kim, and J. H. Park “Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling,” Nat. Commun. 2016, 7, 11943.

17.    K. Zhang, J. K. Kim, M. Ma, S. Y. Yim, C. Lee, H. Shin, and J. H. Park “Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H2 Generation,” Adv. Funct. Mater. 2016, 26, 4527-4534.

18.    K. Zhang, L. Wang, J. K. Kim, M. Ma, G. Veerappan, C. Lee, K. Kong, H. Lee, and J. H. Park “An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation,” Energy Environ. Sci. 2016, 9, 499-503.

19.    J. Shim, J. K. Kim, K. S. Lee, C. Lee, M. Ma, W. K. Choi, J. Y. Hwang, H. Y. Yang, B. Angadi, J. H. Park, K. Yu, D. I. Son, “A facile chemical synthesis of ZnO@multilayer graphene nanoparticles with fast charge separation and enhanced performance for application in solar energy conversion,” Nano Energy 2016, 25, 9-17.

20.    X. Shi, L. Cai, M. Ma, X. Zheng, and J. H. Park “General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting,” ChemSusChem 2015, 8, 3192-3203.

21.    X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon, I. T. Choi, J. K. Kim, H. K. Kim, D. H. Wang, and J. H. Park “Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device,” Nano Energy 2015, 13, 182-191.

22.    K. Zhang, W. Kim, M. Ma, X. Shi, and J. H. Park “Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution,” J. Mater. Chem. A 2015, 3, 4803-4810.

23.    K. Zhang, H. Kim, J. Lee, G. Chang, X. Shi, W. Kim, M. Ma, K. Kong, J. Choi, M. Song, and J. H. ParkUnconventional Pore and Defect Generation in Molybdenum Disulfide: Application in High-Rate Lithium-Ion Batteries and the Hydrogen Evolution Reaction,” ChemSusChem 2014, 7, 2489-2495.