General

Honghui Shang, Associate Professor

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China


Address : No.6 Kexueyuan South Road Zhongguancun,Haidian District Beijing,China

Postcode :100190



Research Areas

(1) High-performance computation

(2) First-principles method development and implementation

(3) Kinetic Monte Carlo method development and implementation


Education

2002–2006 B.S. in Physics, University of Science and Technology of China.

Thesis: "Program practice on computational quantum chemistry"

Supervisor Professor Jinlong Yang


2006–2011 Ph.D in Physical Chemistry, University of Science and Technology of China

Thesis: "Implementation of nonlocal exchange and correlation interaction in extended systems with numerical atomic basis set".

Supervisor Professor Jinlong Yang


Experience

   
Work Experience

2012–2018 PostDoc, Fritz Haber Institute of the Max Planck Society, Berlin.

Developed numerical methods for density functional perturbation theory and electron-phonon renormalization of band structure for all-electron numerical orbital, and made implementation in FHI-aims.


2018–Present Associate Professor, Institute of Computing Technology, Chinese Academy of Sciences, Beijing. Development of high-performance computational software for the first principles calculations.

Publications

[1]Mingchuan Wu, Yangjun Wu, Honghui Shang, Ying Liu, Huimin Cui, Fang Li, Xiaohui  Duan, Yunquan Zhang, and Xiaobing Feng. Scaling Poisson Solvers on Many Cores via MMEwald. IEEE Transactions on Parallel and Distributed Systems, pages  1--1, 2021. [ bib | DOI | http ]
[2]Honghui Shang, Xin Chen, Xingyu Gao, Rongfen Lin, Lifang Wang, Fang Li, Qian  Xiao, Lei Xu, Qiang Sun, Leilei Zhu, Fei Wang, Yunquan Zhang, and Haifeng  Song. TensorKMC: Kinetic Monte Carlo Simulation of 50 Trillion Atoms  Driven by Deep Learning on a New Generation of Sunway Supercomputer. In Proceedings of the International Conference for High  Performance Computing, Networking, Storage and Analysis, pages 1--14, New  York, NY, USA, nov 2021. ACM. [ bib | DOI | http ]
[3]Honghui Shang, Fang Li, Yunquan Zhang, Ying Liu, Libo Zhang, Mingchuan Wu,  Yangjun Wu, Di Wei, Huimin Cui, Xin Liu, Fei Wang, Yuxi Ye, Yingxiang Gao,  Shuang Ni, Xin Chen, and Dexun Chen. Accelerating all-electron ab initio simulation of raman spectra for  biological systems. In Proceedings of the International Conference for High  Performance Computing, Networking, Storage and Analysis, pages 1--15, New  York, NY, USA, nov 2021. ACM. [ bib | DOI | http ]
[4]Fang Li, Xin Liu, Yong Liu, Pengpeng Zhao, Yuling Yang, Honghui Shang, Weizhe  Sun, Zhen Wang, Enming Dong, and Dexun Chen. SW_Qsim: A Minimize-Memory Quantum Simulator with High-Performance  on a New Sunway Supercomputer. In Proceedings of the International Conference for High  Performance Computing, Networking, Storage and Analysis, volume 1, pages  1--13, New York, NY, USA, nov 2021. ACM. [ bib | DOI | http ]
[5]Honghui Shang, Fang Li, Yunquan Zhang, Libo Zhang, You Fu, Yingxiang Gao,  Yangjun Wu, Xiaohui Duan, Rongfen Lin, Xin Liu, Ying Liu, and Dexun Chen. Extreme-scale ab initio quantum raman spectra simulations on the  leadership HPC system in China. In Proceedings of the International Conference for High  Performance Computing, Networking, Storage and Analysis, pages 1--13, New  York, NY, USA, nov 2021. ACM. [ bib | DOI | http ]
[6]Lei Xu, Li-Fang Wang, Xin Chen, Xingyu Gao, Hong-Hui Shang, Hai-Feng Liu, and  Hai-Feng Song. Long-term behavior of vacancy defects in Pu-Ga alloy: effects of  temperature and Ga concentration. Computational and Theoretical Chemistry, page 113338, 2021. [ bib | DOI | http ]
[7]Honghui Shang, Xiaohui Duan, Fang Li, Libo Zhang, Zhiqian Xu, Kan Liu, Haiwen  Luo, Yingrui Ji, Wenxuan Zhao, Wei Xue, Li Chen, and Yunquan Zhang. Many-core acceleration of the first-principles all-electron quantum  perturbation calculations. Computer Physics Communications, 267:108045, oct 2021. [ bib | DOI | http ]
[8]Ningning Li, Leilei Zhu, Honghui Shang, Feng Wang, Yu Zhang, Yuyu Yao, Junjun  Wang, Xueying Zhan, Fengmei Wang, Jun He, and Zhenxing Wang. Controlled synthesis and Raman study of a 2D antiferromagnetic  P-type semiconductor: α-MnSe. Nanoscale, 13(14):6953--6964, 2021. [ bib | DOI ]
[9]Honghui Shang and Jinlong Yang. Capturing the Electron–Phonon Renormalization in Molecules from  First-Principles. The Journal of Physical Chemistry A, 125(12):2682--2689, apr  2021. [ bib | DOI | http ]
[10]Honghui Shang, Jin Zhao, and Jinlong Yang. Assessment of the Mass Factor for the Electron–Phonon Coupling in  Solids. The Journal of Physical Chemistry C, 125(11):6479--6485, mar  2021. [ bib | DOI | http ]
[11]Honghui Shang. The Sternheimer approach to all-electron real-space  density-functional perturbation theory with atomic basis set. AIP Advances, 11(1):015224, jan 2021. [ bib | DOI | http ]
[12]Honghui Shang and Haidi Wang. Anharmonic Raman spectra simulation of crystals from deep neural  networks. AIP Advances, 11(3):35105, mar 2021. [ bib | DOI | http ]
[13]Honghui Shang and Jinlong Yang. Implementation of Laplace Transformed MP2 for Periodic Systems With  Numerical Atomic Orbitals. Frontiers in Chemistry, 8:956, nov 2020. [ bib | DOI | http ]
[14]Honghui Shang, WanZhen Liang, Yunquan Zhang, and Jinlong Yang. Efficient parallel linear scaling method to get the response density  matrix in all-electron real-space density-functional perturbation theory. Computer Physics Communications, 258:107613, 2021. [ bib | DOI | http ]
[15]Tong Shen, Xiao-Wei Zhang, Honghui Shang, Min-Ye Zhang, Xinqiang Wang, En-Ge  Wang, Hong Jiang, and Xin-Zheng Li. Influence of high-energy local orbitals and electron-phonon  interactions on the band gaps and optical absorption spectra of hexagonal  boron nitride. Phys. Rev. B, 102(4):45117, 2020. [ bib | DOI | http ]
[16]Honghui Shang, Lei Xu, Baodong Wu, Xinming Qin, Yunquan Zhang, and Jinlong  Yang. The dynamic parallel distribution algorithm for hybrid  density-functional calculations in HONPAS package. Computer Physics Communications, 254:107204, sep 2020. [ bib | DOI | http ]
[17]Xinming Qin, Honghui Shang, Lei Xu, Wei Hu, Jinlong Yang, Shigang Li, and  Yunquan Zhang. The static parallel distribution algorithms for hybrid  density-functional calculations in HONPAS package. International Journal of High Performance Computing  Applications, 34(2):159--168, mar 2020. [ bib | DOI | http ]
[18]Honghui Shang and Jinlong Yang. The Moving-Grid Effect in the Harmonic Vibrational Frequency  Calculations with Numeric Atom-Centered Orbitals. The Journal of Physical Chemistry A, 124(14):2897--2906, apr  2020. [ bib | DOI | http ]
[19]Kun Li, Honghui Shang, Yunquan Zhang, Shigang Li, Baodong Wu, Dong Wang, Libo  Zhang, Fang Li, Dexun Chen, and Zhiqiang Wei. OpenKMC: a KMC design for hundred-billion-atom simulation using  millions of cores on Sunway Taihulight. In Proceedings of the International Conference for High  Performance Computing, Networking, Storage and Analysis, page 68. ACM, 2019. [ bib ]
[20]Honghui Shang, Adam Argondizzo, Shijing Tan, Jin Zhao, Patrick Rinke, Christian  Carbogno, Matthias Scheffler, and Hrvoje Petek. Electron-phonon coupling in $d$-electron solids: A  temperature-dependent study of rutile  ${Ti}{{O}}_{2}$  by first-principles theory and two-photon photoemission. Phys. Rev. Research, 1(3):33153, 2019. [ bib | DOI | http ]
[21]Honghui Shang, Nathaniel Raimbault, Patrick Rinke, Matthias Scheffler, Mariana  Rossi, and Christian Carbogno. All-electron, real-space perturbation theory for homogeneous  electric fields: theory, implementation, and application within DFT. New Journal of Physics, 20(7):073040, jul 2018. [ bib | DOI | http ]
[22]Honghui Shang, Christian Carbogno, Patrick Rinke, and Matthias Scheffler. Lattice dynamics calculations based on density-functional  perturbation theory in real space. Computer Physics Communications, 215:26--46, jun 2017. [ bib | DOI | http ]
[23]Ulla Simon, Sebastián Alarcón Villaseca, Honghui Shang, Sergey V  Levchenko, Sebastian Arndt, Jan D Epping, Oliver Görke, Matthias  Scheffler, Reinhard Schomäcker, Johan van Tol, Andrew Ozarowski, and  Klaus-Peter Dinse. Li/MgO Catalysts Doped with Alio-valent Ions. Part II: Local  Topology Unraveled by EPR/NMR and DFT Modeling. ChemCatChem, 9(18):3597--3610, sep 2017. [ bib | DOI | http ]
[24]Hikmet Sezen, Honghui Shang, Fabian Bebensee, Chengwu Yang, Maria Buchholz,  Alexei Nefedov, Stefan Heissler, Christian Carbogno, Matthias Scheffler,  Patrick Rinke, and Christof Wöll. Evidence for photogenerated intermediate hole polarons in ZnO. Nature Communications, 6(1):6901, dec 2015. [ bib | DOI | http ]
[25]Adam Argondizzo, Xuefeng Cui, Cong Wang, Huijuan Sun, Honghui Shang, Jin Zhao,  and Hrvoje Petek. Ultrafast multiphoton pump-probe photoemission excitation pathways  in rutile TiO 2 ( 110 ). Physical Review B, 91(15):155429, apr 2015. [ bib | DOI | http ]
[26]Xinming Qin, Honghui Shang, Hongjun Xiang, Zhenyu Li, and Jinlong Yang. HONPAS: A linear scaling open-source solution for large system  simulations. International Journal of Quantum Chemistry, 115(10):647--655,  may 2015. [ bib | DOI | http ]
[27]Honghui Shang, Zhenyu Li, and Jinlong Yang. Implementation of screened hybrid density functional for periodic  systems with numerical atomic orbitals: Basis function fitting and integral  screening. The Journal of Chemical Physics, 135(3):034110, jul 2011. [ bib | DOI | http ]
[28]Honghui Shang, Hongjun Xiang, Zhenyu Li, and Jinlong Yang. Linear scaling electronic structure calculations with numerical  atomic basis set. International Reviews in Physical Chemistry, 29(4):665--691,  oct 2010. [ bib | DOI | http ]
[29]Honghui Shang, Zhenyu Li, and Jinlong Yang. Implementation of Exact Exchange with Numerical Atomic Orbitals. The Journal of Physical Chemistry A, 114(2):1039--1043, jan  2010. [ bib | DOI | http ]

Conferences

(1)Honghui Shang, Density-Functional Perturbation Theory in FHI-aims, FHI-aims Users’ and Developers’ Meeting, Munich, August, 2018.

(2) Honghui Shang, First-principles Evidence for Intermediate Hole Polarons in ZnO, Collaboration Team meeting on Electron-Vibrational Coupling, Rome, January 2015

(3) Honghui Shang, Electron-phonon Interaction Using Numeric Atom-centered Orbitals, Electron-vibration coupling : theoretical and numerical challenges, Lausanne, May, 2015

(4) Honghui Shang, Electron-phonon Interaction Using Numeric Atom-centered Orbitals, Workshop on Methods and Algorithms in Electronic-Structure Theory, Ringberg Castle, June, 2015