基本信息
汪龙,研究员/博士生导师,团队副组长,中国科学院宁波材料技术与工程研究所
电子邮件: wanglong@nimte.ac.cn
通信地址: 浙江省宁波市镇海区中官西路1219号
邮政编码:315201
研究领域
生物基高分子发泡材料
高分子材料的高性能化和多功能化
发泡新技术与新方法
高分子材料改性及其加工定构
招生信息
招生专业
070305-高分子化学与物理080503-材料加工工程
招生方向
高分子材料加工功能与高性能高分子
教育背景
2009-09--2014-06 四川大学 博士2005-09--2009-06 安徽大学 学士
工作经历
工作简历
2019-12~现在, 中国科学院宁波材料技术与工程研究所, 研究员2016-10~2019-12,日本京都大学, 特聘助理教授2015-12~2016-09,日本京都大学, 特聘研究员2014-09~2015-11,加拿大多伦多大学, 博士后
专利与奖励
专利成果
[1] 汪龙, 周啸, 吴明辉, 高鹏, 李学云, 邴晓虎, 郑文革. 一种TPEE超临界微孔注塑发泡材料及其制备方法和应用. CN: CN116655992A, 2023-08-29.[2] 高鹏, 汪龙, 马文宇, 凌邑菡, 崔仕杰, 郑文革. 一种高强高韧的可降解PBAT共混物发泡材料的制备方法. CN: CN116535723A, 2023-08-04.[3] 汪龙, 唐嘉忆, 吴明辉, 马文宇, 高鹏, 任倩, 郑文革. 一种聚醚砜固态发泡材料的制备方法. CN: CN116622115A, 2023-08-22.[4] 马文宇, 汪龙, 吴明辉, 任倩, 高鹏, 郑文革. 通过核壳结构分散相改善低气压注塑条件下聚丙烯发泡行为. CN: CN115636973A, 2023-01-24.[5] 任倩, 汪龙, 吴明辉, 郑文革, 谢开峰. 一种用于辅助发泡制品膨胀倍率测试的装置和组件. CN: CN217981390U, 2022-12-06.[6] 汪龙, 任倩, 郑文革, 李婉婉, 朱秀宇. 聚乳酸基发泡材料及其制备方法. CN: CN113736128B, 2023-01-03.[7] 汪龙, 任倩, 郑文革, 李婉婉, 朱秀宇. 聚乳酸基发泡材料及其制备方法. CN: CN113736128A, 2021-12-03.[8] 任倩, 汪龙, 郑文革, 吴明辉, 翁正升, 李婉婉, 朱秀宇, 赵永青. 聚乳酸通孔膜及其制备方法和应用. CN: CN112876725A, 2021-06-01.[9] 蓝小琴, 吴飞, 崇云凯, 郑文革, 罗海斌, 汪龙. 一种开孔丙烯类聚合物发泡珠粒的制备方法. CN: CN114106471A, 2022-03-01.[10] 汪龙, 任倩, 吴飞, 郑文革, 吴明辉, 罗海斌, 蓝小琴, 崇云凯. 微孔发泡注塑成型塑化装置. CN: CN212602950U, 2021-02-26.[11] 汪龙, 任倩, 吴飞, 郑文革, 吴明辉, 罗海斌, 蓝小琴, 崇云凯. 微孔发泡注塑成型塑化装置及成型工艺. CN: CN113829566A, 2021-12-24.[12] 汪龙, 郑文革, 任倩, 张利华, 吴明辉, 吴飞, 罗海斌. 一种超临界流体注塑发泡聚乳酸泡沫材料及其制备方法. CN: CN111286070B, 2021-06-29.[13] 汪龙, 郑文革, 吴明辉, 任倩, 吴飞, 蓝小琴, 崇云凯. 一种微孔注塑成型开孔聚合物泡沫材料的方法及产品. CN: CN111286117A, 2020-06-16.
出版信息
发表论文
[1] Mingxian Xu, Minghui Wu, Xueyun Li, Jiayi Tang, Wenyu Ma, Xiuyu Zhu, Qian Ren, Long Wang, Wenge Zheng. Biodegradable nanofibrillated microcellular PBS/PLA foams for selective oil absorption. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. 2024, 254: http://dx.doi.org/10.1016/j.ijbiomac.2023.127844.[2] Ma, Wenyu, Wu, Minghui, Gao, Peng, Bing, Xiaohu, Wu, Fei, Wang, Long, Zheng, Wenge. Significantly Improved Foamability and Mechanical Properties of Polypropylene through a Core-Shell Structure via Low Gas Pressure Foam Injection Molding. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2023, 62(15): 6149-6157, http://dx.doi.org/10.1021/acs.iecr.2c04162.[3] Xueyun Li, Minghui Wu, Jiali Chen, Xiao Zhou, Qian Ren, Long Wang, Bin Shen, Wenge Zheng. A facile and large-scale approach to prepare macroscopic segregated polyether block amides/carbon nanostructures composites with a gradient structure for absorption-dominated electromagnetic shielding with ultra-low reflection. COMPOSITES COMMUNICATIONS[J]. 2023, 40: 101628-, http://dx.doi.org/10.1016/j.coco.2023.101628.[4] Wang, Long, Wu, Minghui, Ren, Qian, Weng, Zhengsheng, Li, Wanwan, Zhu, Xiuyu, Zheng, Wenge, Yi, Xiaosu. Strong and high void fraction PP/CNS nanocomposite foams fabricated by core-back foam injection molding. JOURNAL OF APPLIED POLYMER SCIENCE[J]. 2023, 140(8): [5] Li, Xueyun, Li, Shan, Wu, Minghui, Weng, Zhengsheng, Ren, Qian, Xiao, Peng, Wang, Long, Zheng, Wenge. Multifunctional polyether block amides/carbon nanostructures piezoresistive foams with largely linear range, enhanced and humidity-regulated microwave shielding. CHEMICAL ENGINEERING JOURNAL[J]. 2023, 455: http://dx.doi.org/10.1016/j.cej.2022.140860.[6] Qian Ren, Wanwan Li, Shijie Cui, Wenyu Ma, Xiuyu Zhu, Minghui Wu, Long Wang, Wenge Zheng, Takeshi Semba, Masahiro Ohshima. Improved thermal insulation and compressive property of bimodal poly (lactic acid)/cellulose nanocomposite foams. CARBOHYDRATE POLYMERS. 2023, 302: http://dx.doi.org/10.1016/j.carbpol.2022.120419.[7] Wu, Minghui, Ren, Qian, Zhu, Xiuyu, Li, Wanwan, Luo, Haibin, Wu, Fei, Wang, Long, Zheng, Wenge, Cui, Ping, Yi, Xiaosu. Super toughened blends of poly(lactic acid) and poly(butylene adipate-co-terephthalate) injection-molded foams via enhancing interfacial compatibility and cellular structure. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES[J]. 2023, 245: http://dx.doi.org/10.1016/j.ijbiomac.2023.125490.[8] Ling, Yihan, Li, Xueyun, Gao, Peng, Wu, Minghui, Wang, Long, Zheng, Wenge. Lightweight biodegradable porous poly(propylene carbonate)/carbon nanostructures nano/microcellular structures with enhanced foamability, good electromagnetic interference shielding, and low permanent strain. COMPOSITES COMMUNICATIONS[J]. 2023, 44: http://dx.doi.org/10.1016/j.coco.2023.101760.[9] Ren, Qian, Wu, Minghui, Wang, Long, Zheng, Wenge, Hikima, Yuta, Semba, Takeshi, Ohshima, Masahiro. Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability. CARBOHYDRATE POLYMERS[J]. 2022, 286: http://dx.doi.org/10.1016/j.carbpol.2022.119320.[10] Weng, Zhengsheng, Ren, Qian, Wu, Minghui, Zhu, Xiuyu, Li, Wanwan, Wang, Long, Zheng, Wenge. Lightweight and tough PVDF foams via high-pressure foam injection molding with core-back operation. POLYMER ENGINEERING AND SCIENCE[J]. 2022, 62(11): 3543-3552, http://dx.doi.org/10.1002/pen.26125.[11] Zhu, Xiuyu, Ren, Qian, Li, Wanwan, Wu, Minghui, Weng, Zhengsheng, Wang, Jinggang, Zheng, Wenge, Wang, Long. In situ nanofibrillar fully-biobased poly (lactic acid)/poly (ethylene 2,5-furandicarboxylate) composites with promoted crystallization kinetics, mechanical properties, and heat resistance. POLYMER DEGRADATION AND STABILITY[J]. 2022, 206: http://dx.doi.org/10.1016/j.polymdegradstab.2022.110172.[12] Ren, Qian, Wu, Minghui, Wang, Long, Zheng, Wenge, Hikima, Yuta, Semba, Takeshi, Ohshima, Masahiro. Light and strong poly (lactic acid)/ cellulose nanofiber nanocomposite foams with enhanced rheological and crystallization property. JOURNAL OF SUPERCRITICAL FLUIDS[J]. 2022, 190: http://dx.doi.org/10.1016/j.supflu.2022.105758.[13] Li, Wanwan, Ren, Qian, Zhu, Xiuyu, Wu, Minghui, Weng, Zhengsheng, Wang, Long, Zheng, Wenge. Enhanced heat resistance and compression strength of microcellular poly (lactic acid) foam by promoted stereocomplex crystallization with added D-Mannitol. JOURNAL OF CO2 UTILIZATION[J]. 2022, 63: http://dx.doi.org/10.1016/j.jcou.2022.102118.[14] Ma, Wenyu, Weng, Zhengsheng, Wu, Minghui, Ren, Qian, Wu, Fei, Wang, Long, Zheng, Wenge. Lightweight and High Impact Polypropylene Foam Fabricated via Ultra-Low Gas Pressure Injection Molding. MACROMOLECULAR MATERIALS AND ENGINEERING. 2022, 308(3): [15] Ren, Qian, Zhu, Xiuyu, Li, Wanwan, Wu, Minghui, Cui, Shijie, Ling, Yihan, Ma, Xuehua, Wang, Guilong, Wang, Long, Zheng, Wenge. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES[J]. 2022, 205: 740-748, http://dx.doi.org/10.1016/j.ijbiomac.2022.03.107.[16] Wu, Minghui, Wu, Fei, Ren, Qian, Jia, Xichen, Luo, Haibin, Shen, Bin, Wang, Long, Zheng, Wenge. Tunable electromagnetic interference shielding performance of polypropylene/carbon black composites via introducing microcellular structure. COMPOSITES COMMUNICATIONS[J]. 2022, 36: 101363-, http://dx.doi.org/10.1016/j.coco.2022.101363.[17] Ren, Qian, Wu, Minghui, Weng, Zhengsheng, Zhu, Xiuyu, Li, Wanwan, Huang, Pengke, Wang, Long, Zheng, Wenge, Ohshima, Masahiro. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers. CARBOHYDRATE POLYMERS[J]. 2022, 276: http://dx.doi.org/10.1016/j.carbpol.2021.118800.[18] 任倩, 黄朋科, 赵永青, 汪龙, 郑文革. 超临界流体制备聚乳酸发泡材料的研究进展. 高分子通报[J]. 2021, 52-64, http://lib.cqvip.com/Qikan/Article/Detail?id=7104917936.[19] Nagamine, Shinsuke, Mizuno, Yosuke, Hikima, Yuta, Okada, Kiyomi, Wang, Long, Ohshima, Masahiro. Reinforcement of polypropylene by cellulose microfibers modified with polydopamine and octadecylamine. JOURNAL OF APPLIED POLYMER SCIENCE[J]. 2021, 138(7): http://dx.doi.org/10.1002/app.49851.[20] Ren, Qian, Wu, Minghui, Weng, Zhengsheng, Wang, Long, Zheng, Wenge, Hikima, Yuta, Ohshima, Masahiro. Lightweight and strong gelling agent-reinforced injection-molded polypropylene composite foams fabricated using low-pressure CO2 as the foaming agent. JOURNAL OF CO2 UTILIZATION[J]. 2021, 48: http://dx.doi.org/10.1016/j.jcou.2021.101530.[21] Wu, Minghui, Wu, Fei, Ren, Qian, Weng, Zhengsheng, Luo, Haibin, Wang, Long, Zheng, Wenge. Effect of crystalline structure on the cell morphology and mechanical properties of polypropylene foams fabricated by core-back foam injection molding. JOURNAL OF APPLIED POLYMER SCIENCE[J]. 2021, 138(46): http://dx.doi.org/10.1002/app.51370.[22] Ren, Qian, Wu, Minghui, Li, Wanwan, Zhu, Xiuyu, Zhao, Yongqing, Wang, Long, Zheng, Wenge. A green fabricati on method of poly (lactic acid) perforated membrane via tuned crystallization and gas diffusion process. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES[J]. 2021, 182: 1037-1046, http://dx.doi.org/10.1016/j.ijbiomac.2021.04.105.[23] Wang Long. Preparation of Microcellular Injection-Molded Foams Using Different Types of Low-Pressure Gas via a New Foam Injection Molding Technology. Industrial & Engineering Chemistry Research. 2019, [24] Wang, Long, Okada, Kiyomi, Hikima, Yuta, Ohshima, Masahiro, Sekiguchi, Takafumi, Yano, Hiroyuki. Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding. POLYMERS[J]. 2019, 11(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000460296000063.[25] Chen, Xiao Yuan, Wang, Long, Nagamine, Shinsuke, Ohshima, Masahiro. Study oil/water separation property of PE foam and its improvement by in situ synthesis of zeolitic-imidazolate framework (ZIF-8). POLYMER ENGINEERING AND SCIENCE[J]. 2019, 59(7): 1354-1361, http://dx.doi.org/10.1002/pen.25118.[26] Wang, Long, Hikima, Yuta, Ohshima, Masahiro, Sekiguchi, Takafumi, Yano, Hiroyuki. Evolution of cellular morphologies and crystalline structures in high-expansion isotactic polypropylene/cellulose nanofiber nanocomposite foams. RSC ADVANCES[J]. 2018, 8(28): 15405-15416, https://www.webofscience.com/wos/woscc/full-record/WOS:000431813800018.[27] Wang, Long, Okada, Kiyomi, Sodenaga, Minami, Hikima, Yuta, Ohshima, Masahiro, Sekiguchi, Takafumi, Yano, Hiroyuki. Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites. COMPOSITES SCIENCE AND TECHNOLOGY[J]. 2018, 168: 412-419, http://dx.doi.org/10.1016/j.compscitech.2018.10.023.[28] Wang, Long, Hikima, Yuta, Ohshima, Masahiro, Yusa, Atsushi, Yamamoto, Satoshi, Goto, Hideto. Unusual Fabrication of Lightweight Injection-Molded Polypropylene Foams by Using Air as the Novel Foaming Agent. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2018, 57(10): 3800-3804, https://www.webofscience.com/wos/woscc/full-record/WOS:000427910300034.[29] Wang, Long, Hikima, Yuta, Ishihara, Shota, Ohshima, Masahiro. Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. POLYMER[J]. 2017, 128: 119-127, http://dx.doi.org/10.1016/j.polymer.2017.09.025.[30] Wang, Long, Hikima, Yuta, Ohshima, Masahiro, Yusa, Atsushi, Yamamoto, Satoshi, Goto, Hideto. Development of a Simplified Foam Injection Molding Technique and Its Application to the Production of High Void Fraction Polypropylene Foams. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2017, 56(46): 13734-13742, https://www.webofscience.com/wos/woscc/full-record/WOS:000416499900022.[31] Wang, Long, Lee, Richard E, Wang, Guilong, Chu, Raymond K M, Zhao, Jinchuan, Park, Chul B. Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. CHEMICAL ENGINEERING JOURNAL[J]. 2017, 327: 1151-1162, http://dx.doi.org/10.1016/j.cej.2017.07.024.[32] Long Wang, Megumi Ando, Masaya Kubota, Shota Ishihara, Yuta Hikima, Masahiro Ohshima, Takafumi Sekiguchi, Akihiro Sato, Hiroyuki Yano. Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. COMPOSITES PART A. 2017, 98: 166-173, http://dx.doi.org/10.1016/j.compositesa.2017.03.028.[33] Wang, Long, Ishihara, Shota, Hikima, Yuta, Ohshima, Masahiro, Sekiguchi, Takafumi, Sato, Akihiro, Yano, Hiroyuki. Unprecedented Development of Ultrahigh Expansion Injection-Molded Polypropylene Foams by Introducing Hydrophobic-Modified Cellulose Nanofibers. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(11): 9250-9254, https://www.webofscience.com/wos/woscc/full-record/WOS:000397478100007.
科研活动
科研项目
( 1 ) 中国科学院宁波材料技术与工程研究所“团队人才”计划项目, 负责人, 中国科学院计划, 2019-12--2023-11( 2 ) 中国科学院率先行动“****”青年项目(B类)择优支持项目, 负责人, 中国科学院计划, 2019-12--2023-11( 3 ) 聚乳酸/纤维素纳米纤维复合发泡材料的制备及其发泡行为研究, 负责人, 国家任务, 2021-01--2023-12( 4 ) 新型环保耐高温自润滑高压护套关键技术及其产业化研究, 负责人, 地方任务, 2020-08--2021-07( 5 ) 轻质高强注塑发泡技术研发与应用, 负责人, 地方任务, 2021-04--2024-03
指导学生
已指导学生
高鹏 硕士研究生 085600-材料与化工
马文宇 硕士研究生 085600-材料与化工
现指导学生
徐明仙 硕士研究生 085600-材料与化工
焦天宇 硕士研究生 070305-高分子化学与物理
马文宇 博士研究生 070305-高分子化学与物理
付呈祥 硕士研究生 085600-材料与化工