基本信息
高兴 男 博导 中国科学院深圳先进技术研究院
中国科学院人才引进计划
电子邮件: xing.gao@siat.ac.cn; hustergaoxing@hotmail.com
通信地址: 深圳市南山区学苑大道1068号,中国科学院深圳先进技术研究院
邮政编码:
研究领域
电活性人工肌肉
深度仿生机器人
软机电系统高端装备制造
招生信息
常年招聘博士后:
机器人方向;机电自动化;控制;高分子材料合成;先进制造
招生专业
083100-生物医学工程
招生方向
智能软体医疗器械软体胶囊内镜机器人软机电系统高端制造装备
教育背景
2012-10--2016-12 拉夫堡大学,英国 博士(全额奖学金)2011-10--2012-09 拉夫堡大学,英国 硕士2007-09--2011-06 华中科技大学 学士
工作经历
工作简历
2019-06~现在, 中国科学院深圳先进技术研究院, 副研究员2018-02~2019-05,布里斯托大学,布里斯托机器人实验室,英国, 博士后2016-10~2017-09,法国国家科学研究中心(CNRS), 博士后
社会兼职
2021-07-12-2023-07-11,中国机械工程学会流体传动与控制分会, 委员
2021-01-01-2030-12-31,中国机械工程学会, 高级会员
2020-01-01-2023-12-31,广东省生物医学工程学会智能介入医学分会, 委员
2021-01-01-2030-12-31,中国机械工程学会, 高级会员
2020-01-01-2023-12-31,广东省生物医学工程学会智能介入医学分会, 委员
专利与奖励
专利成果
[1] 曹崇景, 高兴, 王磊, 陈立金, 陈丁. 柔性激振器. CN: CN112642684A, 2021-04-13.[2] 段文科, 杜文静, 王磊, 奥米索尔奥拉通吉, 高兴, 李晖. 一种血管介入手术机器人主端操控装置. CN: CN112120791A, 2020-12-25.[3] 高兴, 曹崇景, 王磊. 平面吸盘、传送设备、医疗机器人. CN: CN112025674A, 2020-12-04.
出版信息
发表论文
[1] Cao ChongJing, Chen LiJin, Li Bo, Chen GuiMin, Nie ZeDong, Wang Lei, Gao Xing. Toward broad optimal output bandwidth dielectric elastomer actuators. SCIENCE CHINA-TECHNOLOGICAL SCIENCES[J]. 2022, 65(5): 1137-1148, [2] Luo, Meng, Liu, Lei, Liu, Chen, Li, Bo, Cao, Chongjing, Gao, Xing, Li, Dichen. A Single-Chamber Pneumatic Soft Bending Actuator With Increased Stroke-Range by Local Electric Guidance. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS[J]. 2021, 68(9): 8455-8463, http://dx.doi.org/10.1109/TIE.2020.3013544.[3] Sun, Wenjie, Li, Bo, Zhang, Fei, Fang, Chunlong, Lu, Yanjun, Gao, Xing, Cao, Chongjing, Chen, Guimin, Zhang, Chi, Wang, Zhong Lin. TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. NANO ENERGY[J]. 2021, 85: http://dx.doi.org/10.1016/j.nanoen.2021.106012.[4] chongjing cao, Gao Xing. On the mechanical power output comparisons of cone dielectric elastomer actuators. IEEE/ASME Transactions on Mechatronics[J]. 2021, [5] Cao, Chongjing, Hill, Thomas L, Li, Bo, Wang, Lei, Gao, Xing. Nonlinear dynamics of a conical dielectric elastomer oscillator with switchable mono to bi-stability. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES[J]. 2021, 221: 18-30, http://dx.doi.org/10.1016/j.ijsolstr.2020.02.012.[6] Cao, Chongjing, Gao, Xing, Burgess, Stuart, Conn, Andrew T. Power optimization of a conical dielectric elastomer actuator for resonant robotic systems. EXTREME MECHANICS LETTERS[J]. 2020, 35: http://dx.doi.org/10.1016/j.eml.2019.100619.[7] Zhao, Weiwei, Chen, Lijin, Hu, Sanming, Shi, Zhijun, Gao, Xing, Silberschmidt, Vadim V. Printed hydrogel nanocomposites: fine-tuning nanostructure for anisotropic mechanical and conductive properties. ADVANCED COMPOSITES AND HYBRID MATERIALS[J]. 2020, 3(3): 315-324, https://www.webofscience.com/wos/woscc/full-record/WOS:000571869900005.[8] Hu, Sanming, Shi, Zhijun, Zheng, Ruizhu, Ye, Weiliang, Gao, Xing, Zhao, Weiwei, Yang, Guang. Superhydrophobic Liquid-Solid Contact Triboelectric Nanogenerator as a Droplet Sensor for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(36): 40021-40030, https://www.webofscience.com/wos/woscc/full-record/WOS:000571433500008.[9] Li Yingtian. Super Elastic, Sensitive and Low Hysteresis Flexible Strain Sensor Based on Wavy-Patterned Liquid Metal for Human Activities Monitoring. ACS Applied Materials & Interfaces. 2020, [10] Gao, Xing, Sozumert, Emrah, Shi, Zhijun, Yang, Guang, Silberschmidt, Vadim V. Mechanical modification of bacterial cellulose hydrogel under biaxial cyclic tension. MECHANICS OF MATERIALS[J]. 2020, 142: http://dx.doi.org/10.1016/j.mechmat.2019.103272.[11] Li, Lin, Zheng, Jiahong, Chen, Jing, Luo, Zebang, Su, Yi, Tang, Wei, Gao, Xing, Li, Yingtian, Cao, Chongjing, Liu, Qiuhua, Kang, Xiaoyang, Wang, Lei, Li, Hui. Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. ADVANCED MATERIALS INTERFACESnull. 2020, 7(17): https://www.webofscience.com/wos/woscc/full-record/WOS:000549870500001.[12] Chen, Jing, Zhang, Jinjie, Luo, Zebang, Zhang, Jinyong, Li, Lin, Su, Yi, Gao, Xing, Li, Yingtian, Tang, Wei, Cao, Chongjing, Liu, Quhua, Wang, Lei, Li, Hui. Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(19): 22200-22211, http://dx.doi.org/10.1021/acsami.0c04709.[13] Gao, Xing, Cao, Chongjing, Guo, Jionglong, Conn, Andrew. Elastic Electroadhesion with Rapid Release by Integrated Resonant Vibration. ADVANCED MATERIALS TECHNOLOGIES[J]. 2019, 4(1): http://dx.doi.org/10.1002/admt.201800378.[14] Chongjing Cao, Xing Gao, Jianglong Guo, Andrew Conn. De-electroadhesion of Flexible and Lightweight Materials: An Experimental Study. Applied Sciences[J]. 2019, 9(14): https://doaj.org/article/3788d024dbc94484b64bc9af0ce8c3bd.[15] Cao, Chongjing, Gao, Xing, Conn, Andrew T. Towards efficient elastic actuation in bio-inspired robotics using dielectric elastomer artificial muscles. SMART MATERIALS AND STRUCTURES[J]. 2019, 28(9): http://dx.doi.org/10.1088/1361-665X/ab326b.[16] Gao, Xing, Fraulob, Manon, Haiat, Guillaume. Biomechanical behaviours of the bone-implant interface: a review. JOURNAL OF THE ROYAL SOCIETY INTERFACEnull. 2019, 16(156): [17] Cao, C, Gao, X, Conn, A T. A compliantly coupled dielectric elastomer actuator using magnetic repulsion. APPLIED PHYSICS LETTERS[J]. 2019, 114(1): http://dx.doi.org/10.1063/1.5071439.[18] Cao Chongjing, Gao Xing, Conn Andrew T, BarCohen Y, Anderson IA, Johnson NL. Contactless coupling of dielectric elastomer membranes with magnetic repulsion. ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) XXInull. 2019, 10966: [19] Cao, ChongJing, Hill, Thomas L, Conn, Andrew T, Li, Bo, Gao, Xing. Nonlinear Dynamics of a Magnetically Coupled Dielectric Elastomer Actuator. PHYSICAL REVIEW APPLIED[J]. 2019, 12(4): http://dx.doi.org/10.1103/PhysRevApplied.12.044033.[20] Cao, Chongjing, Gao, Xing, Conn, Andrew T. A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics. ADVANCED MATERIALS TECHNOLOGIES[J]. 2019, 4(8): http://dx.doi.org/10.1002/admt.201900128.[21] Gao Xing, Sozumert Emrah, Shi Zhijun, Yang Guang, Silberschmidt Vadim V. Assessing stiffness of nanofibres in bacterial cellulose hydrogels: Numerical-experimental framework. Materials Science & Engineering C[J]. 2017, 77: 9-18, http://dx.doi.org/10.1016/j.msec.2017.03.231.[22] Xing Gao, Zhijun Shi, Andrew Lau, Changqin Liu, Guang Yang, Vadim V. Silberschmidt. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Materials Science & Engineering C. 2016, 62: 130-136, http://dx.doi.org/10.1016/j.msec.2016.01.042.[23] Gao, X, Sevostianov, I. Connection between elastic and electrical properties of cortical bone. JOURNAL OF BIOMECHANICS[J]. 2016, 49(5): 765-772, http://dx.doi.org/10.1016/j.jbiomech.2016.02.019.[24] Gao, Xing, Kusmierczyk, Piotr, Shi, Zhijun, Liu, Changqing, Yang, Guang, Sevostianov, Igor, Silberschmidt, Vadim V. Through-thickness stress relaxation in bacterial cellulose hydrogel. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS[J]. 2016, 59: 90-98, http://dx.doi.org/10.1016/j.jmbbm.2015.12.021.[25] Chen, Yuanming, He, Xuemei, Wu, Yue, Gao, Xing, Wang, Jinling, He, Wei, Silberschmidt, Vadim V, Xu, Huan. Effects of Surface-Functionalized Aluminum Nitride on Thermal, Electrical, and Mechanical Behaviors of Polyarylene Ether Nitrile-Based Composites. POLYMER COMPOSITES[J]. 2016, 37(10): 3033-3041, https://www.webofscience.com/wos/woscc/full-record/WOS:000389207100012.[26] Shi, Zhijun, Gao, Xing, Ullah, Muhammad Wajid, Li, Sixiang, Wang, Qun, Yang, Guang. Electroconductive natural polymer-based hydrogels. BIOMATERIALSnull. 2016, 111: 40-54, http://dx.doi.org/10.1016/j.biomaterials.2016.09.020.[27] Xing Gao, Zhijun Shi, Changqing Liu, Guang Yang, Vadim V Silberschmidt. Fracture Behaviour of Bacterial Cellulose Hydrogel: Microstructural Effect. Procedia Structural Integrity. 2016, 2: 1237-1243, http://dx.doi.org/10.1016/j.prostr.2016.06.158.[28] Xing Gao, Zhijun Shi, Piotr Kuśmierczyk, Changqing Liu, Guang Yang, Igor Sevostianov, Vadim V. Silberschmidt. Time-dependent rheological behaviour of bacterial cellulose hydrogel. Materials Science & Engineering C. 2016, 58: 153-159, http://dx.doi.org/10.1016/j.msec.2015.08.019.[29] Gao, Xing, Shi, Zhijun, Liu, Changqing, Yang, Guang, Sevostianov, Igor, Silberschmidt, Vadim V. Inelastic behaviour of bacterial cellulose hydrogel: In aqua cyclic tests. POLYMER TESTING[J]. 2015, 44: 82-92, http://dx.doi.org/10.1016/j.polymertesting.2015.03.021.[30] Chen, Yuanming, Gao, Xing, Wang, Jinling, He, Wei, Silberschmidt, Vadim V, Wang, Shouxu, Tao, Zhihua, Xu, Huan. Properties and application of polyimide-based composites by blending surface functionalized boron nitride nanoplates. JOURNAL OF APPLIED POLYMER SCIENCE[J]. 2015, 132(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000348313800039.[31] Gao X, Li S, AdelWahab A, Silberschmidt V, IOP. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading. INTERNATIONAL SYMPOSIUM ON DYNAMIC DEFORMATION AND FRACTURE OF ADVANCED MATERIALS (D2FAM 2013)null. 2013, 451:
发表著作
(1) Discontinuous Finite Element Model of Hydrogels: Predicting Stiffness of Nanofibers, Academic Press, 2018-01, 第 1 作者
科研活动
科研项目
( 1 ) 飞秒激光微创手术机器人系统, 参与, 国家级, 2020-01--2022-12( 2 ) 面向心脏不停跳手术的微型介电弹性体仿生吸附机理研究, 主持, 国家级, 2021-01--2023-12( 3 ) 深圳市基础学科布局重点项目“腔道内手术治疗用新型柔性驱动研究”, 主持, 省级, 2020-12--2023-11( 4 ) 面向肺部小结节活检的多模态柔性机器人关键技术研发, 参与, 省级, 2021-06--2023-06( 5 ) 基2021N029刚度可控智能柔性微创手术器械精确制造方法研究, 参与, 省级, 2021-06--2024-06
参与会议
(1)基于谐振驱动的锥形介电弹性体功率输出对比分析 2020软体机器人研讨会 2020-11-29(2)电-磁-力耦合介电弹性体在高阻尼负载条件下实现高效性能输出 2019“软体机器人理论与技术”研讨会 2019-11-17