基本信息
张雪  女    中国科学院深圳先进技术研究院
电子邮件: xue.zhang@siat.ac.cn
通信地址: E311
邮政编码:

研究领域

1.能源材料的设计与高通量筛选

2.基于DFT计算(电)催化反应的机理

招生信息

   
招生专业
070304-物理化学
085600-材料与化工
080501-材料物理与化学
招生方向
能源材料设计与高通量计算,基于DFT理论计算能源反应机理,锂离子电池负极材料的设计

工作经历

   
工作简历
2022-01~现在, 中国科学院深圳先进技术研究院, 副研究员
2018-09~2021-12,中国科学院深圳先进技术研究院, 助理研究员

专利与奖励

   
奖励信息
(1) 深圳市孔雀C类, 市地级, 2020
专利成果
[1] 张雪, 王琢, 赵海涛, 喻学锋. 数据驱动功能材料高通量计算及其结构理性设计软件. 2023SR0250769, 2022-09-20.
[2] 张雪, 喻学锋, 赵海涛, 王佳宏. 基于过渡态搜索原理高通量计算锂离子迁移路径的设计软件. 2023SR0250767, 2022-09-20.
[3] 赵海涛, 喻学锋, 陈薇, 陈子健, 张雪. 机器人辅助数字化可控合成纳米晶体形貌的方法. CN202111468728, 2021-12-03.
[4] 赵海涛, 喻学锋, 陈薇, 陈子健, 张雪. 纳米晶体材料数学模型、数据库和AI算法全流程的可编程理性设计方法. CN202111468080, 2021-12-03.
[5] 喻学锋, 赵海涛, 陈薇、, 陈子健, 张雪. 机器人辅助纳米晶自动表征加速材料的智能化逆向设计. CN202111470545, 2021-12-03.

出版信息

   
发表论文
[1] Cai, Junlin, Zhang, Xue, Lyu, Zixi, Huang, Hongpu, Wang, Shupeng, Fu, Luhong, Wang, Qiuxiang, Yu, XueFeng, Xie, Zhaoxiong, Xie, Shuifen. Host-Guest Ensemble Effect on Dual-Pt atom-on-Rh Nanosheets Enables High-Efficiency and Anti-CO Alkaline Hydrogen Oxidation. ACS CATALYSIS[J]. 2023, 6974-6982, http://dx.doi.org/10.1021/acscatal.3c00803.
[2] Rui Gao, Xin Wang, Xue Zhang, Shumeng Zhang, Xinxin Li, XueFeng Yu, Licheng Bai. High-efficiency recovery of palladium and platinum using black phosphorus for in-situ synthesis of long-term stable hydrogen evolution catalysts. SEPARATION AND PURIFICATION TECHNOLOGY. 2023, 316: http://dx.doi.org/10.1016/j.seppur.2023.123771.
[3] Zhang, Xue, Wang, Zhuo, Lawan, Adam Mukhtar, Wang, Jiahong, Pang, Cheng Heng, Chu, Paul K, Yu, XueFeng, Zhao, Haitao. Data-driven structural descriptor for predicting platinum-based alloys as oxygen reduction electrocatalysts. INFOMAT[J]. 2023, 5(6): 102-113, https://doaj.org/article/5ecb12255d00403cadd369dc756174d4.
[4] Zhang, Junyu, Li, Miao, Kang, Zewen, Xiao, Bensheng, Lin, Haichen, Lu, Jingyu, Liu, Haodong, Zhang, Xue, Peng, DongLiang, Zhang, Qiaobao. Atomic mechanisms of hexagonal close-packed Ni nanocrystallization revealed by in situ liquid cell transmission electron microscopy. NANO RESEARCH[J]. 2022, 15(7): 6772-6778, http://dx.doi.org/10.1007/s12274-022-4475-3.
[5] Lyu, Zixi, Zhang, Xue, Liao, Xinyan, Liu, Kai, Huang, Hongpu, Cai, Junlin, Kuang, Qin, Xie, Zhaoxiong, Xie, Shuifen. Two-Dimensionally Assembled Pd-Pt-Ir Supernanosheets with Subnanometer Interlayer Spacings toward High-Efficiency and Durable Water Splitting. ACS CATALYSIS[J]. 2022, 12(9): 5305-5315, http://dx.doi.org/10.1021/acscatal.2c00859.
[6] Bian, Shi, Liu, Qian, Zhang, Xue, Ma, Chao, Zhang, Yanli, Cheng, Ziqiang, Kang, Yihong, Lu, Wei, Chu, Paul K, Yu, XueFeng, Wang, Jiahong. Fabricating Black-Phosphorus/Iron-Tetraphosphide Heterostructure via a Solid-Phase Solution-Precipitation Method for High-Performance Nitrogen Reduction. SMALL[J]. 2022, 18(39): http://dx.doi.org/10.1002/smll.202203284.
[7] Liu, Jie, Zhang, Xue, Wang, Jiahong, Gu, Liang, Chu, Paul K, Yu, XueFeng. Global structure search for new 2D PtSSe allotropes and their potential for thermoelectirc and piezoelectric applications. CHEMICAL PHYSICS LETTERS[J]. 2022, 805: http://dx.doi.org/10.1016/j.cplett.2022.139913.
[8] Huang, Hongpu, Fu, Luhong, Kong, Weiqiang, Ma, Hairui, Zhang, Xue, Cai, Junlin, Wang, Shupeng, Xie, Zhaoxiong, Xie, Shuifen. Equilibrated PtIr/IrOx Atomic Heterojunctions on Ultrafine 1D Nanowires Enable Superior Dual-Electrocatalysis for Overall Water Splitting. SMALL[J]. 2022, 18(20): http://dx.doi.org/10.1002/smll.202201333.
[9] Zeng, Li, Zhang, Xue, Liu, Yanna, Yang, Xiaoxi, Wang, Jiahong, Liu, Qian, Luo, Qian, Jing, Chuanyong, Yu, XueFeng, Qu, Guangbo, Chu, Paul K, Jiang, Guibin. Surface and interface control of black phosphorus. CHEMnull. 2022, 8(3): 632-662, http://dx.doi.org/10.1016/j.chempr.2021.11.022.
[10] Duan, Zunbin, Wang, Yanfang, Bian, Shi, Liu, Danni, Zhang, Yanli, Zhang, Xue, He, Rui, Wang, Jiahong, Qu, Guangbo, Chu, Paul K, Yu, XueFeng. Size-dependent flame retardancy of black phosphorus nanosheets. NANOSCALE[J]. 2022, 14(7): 2599-2604, http://dx.doi.org/10.1039/d1nr08350c.
[11] Gu, Shuang, Liu, Danni, Zhang, Xue, Huang, Hao, Zhang, Yanli, Cheng, Ziqiang, Liu, Qian, Meng, Lingqiang, Wang, Jiahong, Chu, Paul K, Yu, XueFeng. Finite phosphorene derived partial reduction of metal organic framework nanofoams for enhanced lithium storage capability. JOURNAL OF POWER SOURCES[J]. 2022, 525: http://dx.doi.org/10.1016/j.jpowsour.2022.231025.
[12] Guokang Han, Xue Zhang, Wei Liu, Qinghua Zhang, Zhiqiang Wang, Jun Cheng, Tao Yao, Lin Gu, Chunyu Du, Yunzhi Gao, Geping Yin. Substrate strain tunes pperando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nature Communication[J]. 2021, 12: 6335-, https://www.nature.com/articles/s41467-021-26747-1.
[13] Fan, Qikui, Zhang, Xue, Ge, Xiaohu, Bai, Licheng, He, Dongsheng, Qu, Yunteng, Kong, Chuncai, Bi, Jinglei, Ding, Dawei, Cao, Yueqiang, Duan, Xuezhi, Wang, Jin, Yang, Jian, Wu, Yuen. Manipulating Cu Nanoparticle Surface Oxidation States Tunes Catalytic Selectivity toward CH4 or C2+ Products in CO2 Electroreduction. ADVANCED ENERGY MATERIALS[J]. 2021, 11(36): http://dx.doi.org/10.1002/aenm.202101424.
[14] Wang, Xiaojiang, Zheng, Tianlong, Tang, Yizhao, Li, Xiaoyu, Rykov, Alexandre I, Li, Xuning, Wang, Junhu, He, Qinggang, Cheng, Jun, Zhang, Xue. The Effect of Tuning the Coordination Sphere of Iron Complexes for the Oxygen Reduction Reaction in Acidic Media. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2021, 168(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000638086800001.
[15] Zhang, Junyu, Zhang, Xue, Yang, Dapeng, Zhao, Peng. Ligand-Induced Motion and Self-Assembly Pathways between Nanocubes. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2021, 12(9): 2429-2436, http://dx.doi.org/10.1021/acs.jpclett.1c00254.
[16] Zhang, Xue, Li, Fanghua, Wang, Jiahong, Zhao, Haitao, Yu, XueFeng. Strategy for improving the activity and selectivity of CO2 electroreduction on flexible carbon materials for carbon neutral. APPLIED ENERGY[J]. 2021, 298: http://dx.doi.org/10.1016/j.apenergy.2021.117196.
[17] Yang, Huanhuan, Yu, Binlu, Gu, Shuang, Huang, Hao, Zhang, Yanli, Liu, Danni, Zhang, Xue, Kang, Yihong, Wang, Jiahong, Chu, Paul K, Yu, XueFeng. Silicon monophosphides with controlled size and crystallinity for enhanced lithium anodic performance. NANOSCALE[J]. 2021, 13(1): 51-58, http://dx.doi.org/10.1039/d0nr07386e.
[18] Zhang, Xue, Zhao, Haitao, Chu, Paul K, Wang, Jiahong, Yu, XueFeng. Subsurface intercalation activating basal plane of black phosphorus for nitrogen reduction. JOURNAL OF ENERGY CHEMISTRYnull. 2021, 60(9): 293-299, https://www.sciengine.com/doi/10.1016/j.jechem.2021.01.010.
[19] Sun, YongRong, Zhang, Xue, Wang, LiGuang, Liu, ZhiKai, Kang, Ning, Zhou, Ni, You, WenLong, Li, Jia, Yu, XueFeng. Lattice contraction tailoring in perovskite oxides towards improvement of oxygen electrode catalytic activity. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 421: http://dx.doi.org/10.1016/j.cej.2021.129698.
[20] Zijlstra, Bart, Zhang, Xue, Liu, JinXun, Filot, Ivo A W, Zhou, Zhiyou, Sun, Shigang, Hensen, Emiel J M. First-principles microkinetics simulations of electrochemical reduction of CO2 over Cu catalysts. ELECTROCHIMICA ACTA[J]. 2020, 335: http://dx.doi.org/10.1016/j.electacta.2020.135665.
[21] Zhang, Xue, Wang, Jiahong, Liu, Danni, Zhang, Yanli, Chu, Paul K, Zhou, ZhiYou, Yu, XueFeng. Insight into the overpotentials of electrocatalytic hydrogen evolution on black phosphorus decorated with metal clusters. ELECTROCHIMICA ACTA[J]. 2020, 358: http://dx.doi.org/10.1016/j.electacta.2020.136902.
[22] Wang, Wei, Zhang, Xue, Zhang, Yuhui, Chen, Xiaowei, Ye, Jinyu, Chen, Jiayu, Lyu, Zixi, Chen, Xuejiao, Kuang, Qin, Xie, Shuifen, Xie, Zhaoxiong. Edge Enrichment of Ultrathin 2D PdPtCu Trimetallic Nanostructures Effectuates Top-Ranked Ethanol Electrooxidation. NANO LETTERS[J]. 2020, 20(7): 5458-5464, https://www.webofscience.com/wos/woscc/full-record/WOS:000548893200100.
[23] Qu, Guangbo, Xia, Tian, Zhou, Wenhua, Zhang, Xue, Zhang, Haiyan, Hu, Ligang, Shi, Jianbo, Yu, XueFeng, Jiang, Guibin. Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. CHEMICAL REVIEWS[J]. 2020, 120(4): 2288-2346, https://www.webofscience.com/wos/woscc/full-record/WOS:000517360300006.
[24] Huang, Chi, Hu, Shushu, Zhang, Xue, Cui, Haodong, Wu, Lie, Yang, Na, Zhou, Wenhua, Chu, Paul K, Yu, XueFeng. Sensitive and selective ctDNA detection based on functionalized black phosphorus nanosheets. BIOSENSORS & BIOELECTRONICS[J]. 2020, 165: http://dx.doi.org/10.1016/j.bios.2020.112384.
[25] Liu, Qian, Zhang, Xue, Wang, Jiahong, Zhang, Yanli, Bian, Shi, Cheng, Ziqiang, Kang, Ning, Huang, Hao, Gu, Shuang, Wang, Yun, Liu, Danni, Chu, Paul K, Yu, XueFeng. Crystalline Red Phosphorus Nanoribbons: Large-Scale Synthesis and Electrochemical Nitrogen Fixation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(34): 14383-14387, https://www.webofscience.com/wos/woscc/full-record/WOS:000546663100001.
[26] Wang, Wei, Chen, Xiaowei, Zhang, Xue, Ye, Jinyu, Xue, Fei, Zhen, Chao, Liao, Xinyan, Li, Huiqi, Li, Pingting, Liu, Maochang, Kuang, Qin, Xie, Zhaoxiong, Xie, Shuifen. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. NANO ENERGY[J]. 2020, 71: http://dx.doi.org/10.1016/j.nanoen.2020.104623.
[27] Zhang, Xue, Li, Yong, Guo, Pu, Le, JiaBo, Zhou, ZhiYou, Cheng, Jun, Sun, ShiGang. Theory on optimizing the activity of electrocatalytic proton coupled electron transfer reactions. JOURNAL OF CATALYSIS[J]. 2019, 376: 17-24, http://dx.doi.org/10.1016/j.jcat.2019.06.037.
[28] Yang, HuiJuan, Zhang, Xue, Hong, YuHao, Sari, Hirbod Maleki Kheimeh, Zhou, ZhiYou, Sun, ShiGang, Li, XiFei. Superior Selectivity and Tolerance towards Metal-Ion Impurities of a Fe/N/C Catalyst for CO2 Reduction. CHEMSUSCHEM[J]. 2019, 12(17): 3988-3995, http://dx.doi.org/10.1002/cssc.201901330.
[29] Hui-Juan Yang, Xue Zhang, Yu-Hao Hong, Hirbod Maleki Kheimeh Sari, Zhi-You Zhou, Shi-Gang Sun, Xi-Fei Li. Superior Selectivity and Tolerance towards Fe/N/C Catalyst to Metal Ion Impurities for CO2 Reduction Reaction. ChemSusChem[J]. 2019, 12: 3988-3995, [30] Lu, Jiang, Zhang, Xue, Liu, Danni, Yang, Na, Huang, Hao, Jin, Shaowei, Wang, Jiahong, Chu, Paul K, Yu, XueFeng. Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(41): 37787-37795, https://www.webofscience.com/wos/woscc/full-record/WOS:000491219700041.
[31] Han, Guokang, Zheng, Yu, Zhang, Xue, Wang, Zhiqiang, Gong, Yue, Du, Chunyu, Banis, Mohammad Norouzi, Yiu, YunMui, Sham, TsunKong, Gu, Lin, Sun, Yongrong, Wang, Yajing, Wang, Jinpeng, Gao, Yunzhi, Yin, Geping, Sun, Xueliang. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104088.
[32] Xue Zhang, Chi Chen, Jiao Dong, Rui-Xiang Wang, Qiang Wang, Zhi-You Zhou, Shi-Gang Sun. Comparative Study in Acidic and Alkaline Media of Oxygen Reduction Reaction on Pyrolyzed FePc. ChemElectroChem[J]. 2018, [33] Zhang, Xue, Liu, JinXun, Zijlstra, Bart, Filot, Ivo A W, Zhou, Zhiyou, Sun, Shigang, Hensen, Emiel J M. Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. NANO ENERGY[J]. 2018, 43: 200-209, http://dx.doi.org/10.1016/j.nanoen.2017.11.021.
[34] Zhang, Xue, Chen, Chi, Dong, Jiao, Wang, RuiXiang, Wang, Qiang, Zhou, ZhiYou, Sun, ShiGang. Comparative Study of the Oxygen Reduction Reaction on Pyrolyzed FePc in Acidic and Alkaline Media. CHEMELECTROCHEM[J]. 2018, 5(24): 3946-3952, https://www.webofscience.com/wos/woscc/full-record/WOS:000461673300019.
[35] Chen Chi, Zhou Zhiyou, Wang Yucheng, Zhang Xue, Yang Xiaodong, Zhang Xinsheng, Sun Shigang. 以CaCl2为模板合成的高活性和高稳定性铁、氮、硫共掺杂多孔碳氧还原电催化剂. 催化学报[J]. 2017, 38(4): 673-682, http://lib.cqvip.com/Qikan/Article/Detail?id=7000162101.
[36] 陈驰, 张雪, 周志有, 张新胜, 孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究. 物理化学学报[J]. 2017, 33(9): 1875-1883, http://lib.cqvip.com/Qikan/Article/Detail?id=673090818.
[37] 陈驰, 周志有, 王宇成, 张雪, 杨晓冬, 张新胜, 孙世刚. 以CaCl2为模板合成的高活性和高稳定性铁、氮、硫共掺杂多孔碳氧还原电催化剂. 催化学报[J]. 2017, 38(4): 673-682, http://lib.cqvip.com/Qikan/Article/Detail?id=7000162101.

科研活动

   
科研项目
( 1 ) 基于二维材料的表面配位调控电催化析氢反应机理研究, 负责人, 国家任务, 2022-01--2024-12
( 2 ) 燃料电池Pt基双金属催化剂的高通量筛选, 负责人, 研究所自选, 2021-01--2022-12