基本信息
王猛  男  博导  中国科学院天津工业生物技术研究所
电子邮件: wangmeng@tib.cas.cn
通信地址: 天津空港经济区西七道32号
邮政编码:

招生信息

   
招生专业
071005-微生物学
071010-生物化学与分子生物学
081703-生物化工
招生方向
合成生物学,生物学自动化,高通量筛选,天然产物生物合成

教育背景

2005-09--2009-12   美国锡拉丘兹大学   化学系博士学位
2001-09--2005-05   浙江大学   化学系学士学位
2001-09--2005-05   浙江大学   生物信息学第二学位

工作经历

   
工作简历
2015-05~现在, 中国科学院天津工业生物技术研究所, 研究员
2010-02~2015-04,伊利诺伊大学厄巴纳香槟分校, 博士后

专利与奖励

   
专利成果
[1] 涂然, 王猛, 张玥. 一种使用液滴微流控芯片的高通量筛选方法在放线菌中的应用. CN: CN112852915A, 2021-05-28.

[2] 王猛, 潘文嘉. 特定核酸结合蛋白及其富集特定核酸的方法. CN: CN111041023A, 2020-04-21.

[3] 王猛, 徐捷, 刘扬, 程海娇. 生产新型靛蓝染料谷氨酸棒杆菌及其构建方法与应用. CN: CN109722401A, 2019-05-07.

出版信息

   
发表论文
[1] Xuemei Zhang, Yan Wang, Yue Zhang, Meng Wang. CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea. MICROORGANISMS[J]. 2023, 11(623): https://doaj.org/article/776017a1ce144c6eaac2896e7af67887.
[2] Yue Zhang, Xuemei Zhang, Meng Wang. Product-driven high-throughput screening of industrial filamentous actinomycetes. TRENDS IN BIOTECHNOLOGY[J]. 2023, http://dx.doi.org/10.1016/j.tibtech.2023.02.004.
[3] 卢挥, 张启, 于思礼, 王钰, 康明, 韩双艳, 刘叶, 王猛. 谷氨酸棒杆菌中基于CRISPR/Cas9的多位点碱基编辑系统的优化. 生物工程学报[J]. 2022, 38(2): 780-795, http://lib.cqvip.com/Qikan/Article/Detail?id=7106678265.
[4] 涂然, 李世新, 李昊霓, 王猛. 液滴微流控技术在微生物工程菌株选育中的应用进展. 合成生物学[J]. 2022, [5] 1.\tErbing Hua, Yue Zhang, Kaiyue Yun, Wenjia Pan, Ye Liu, Shixin Li, Yan Wang, Ran Tu, Meng Wang. Whole-cell biosensor and producer co-cultivation based microfludic platform for screening Saccharopolyspora erythraea with hyper erythromycin production. ACS Synth Biol[J]. 2022, [6] 涂然, 毛雨丰, 刘叶, 程海娇, 袁伟, 于思礼, 潘文嘉, 安晶晶, 王猛. 工程菌种自动化高通量编辑与筛选研究进展. 生物工程学报[J]. 2022, 38(11): 4162-4179, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545590.
[7] Siwei Li, Jingjing An, Yaqiu Li, Xiagu Zhu, Dongdong Zhao, Lixian Wang, Yonghui Sun, Yuanzhao Yang, Changhao Bi, Xueli Zhang, Meng Wang. Automated high-throughput genome editing platform with an AI learning in situ prediction model. NATURE COMMUNICATIONS[J]. 2022, 13(1): http://dx.doi.org/10.1038/s41467-022-35056-0.
[8] 杨毅, 毛雨丰, 杨春贺, 王猛, 廖小平, 马红武. 面向微生物遗传操作的编辑序列设计工具的研究进展. 合成生物学[J]. 2022, 4(1): 30-46, https://synbioj.cip.com.cn/CN/abstract/abstract330.shtml.
[9] Wang, Yu, Zhao, Dongdong, Sun, Letian, Wang, Jie, Fan, Liwen, Cheng, Guimin, Zhang, Zhihui, Ni, Xiaomeng, Feng, Jinhui, Wang, Meng, Zheng, Ping, Bi, Changhao, Zhang, Xueli, Sun, Jibin. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS SYNTHETIC BIOLOGY[J]. 2022, 11(10): 3368-3378, http://dx.doi.org/10.1021/acssynbio.2c00265.
[10] Wei Yuan, Chenjian Jiang, Qin Wang, Yubo Fang, Jin Wang, Meng Wang, Han Xiao. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. NATURE COMMUNICATIONS[J]. 2022, 13(1): http://dx.doi.org/10.1038/s41467-022-35500-1.
[11] Yang, Yi, Mao, Yufeng, Wang, Ruoyu, Li, Haoran, Liu, Ye, Cheng, Haijiao, Shi, Zhenkun, Wang, Yu, Wang, Meng, Zheng, Ping, Liao, Xiaoping, Ma, Hongwu. AutoESD: a web tool for automatic editing sequence design for genetic manipulation of microorganisms. NUCLEIC ACIDS RESEARCH[J]. 2022, 50(W1): W75-W82, http://dx.doi.org/10.1093/nar/gkac417.
[12] Ye Liu, Ruoyu Wang, Jiahui Liu, Hui Lu, Haoran Li, Yu Wang, Xiaomeng Ni, Junwei Li, Yanmei Guo, Hongwu Ma, Xiaoping Liao, Meng Wang. Base editor enables rational genome-scale functional screening for enhanced industrial phenotypes in Corynebacterium glutamicum. SCIENCE ADVANCES[J]. 2022, 8(35): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432829/.
[13] Yun, Kaiyue, Zhang, Yue, Li, Shixin, Wang, Yan, Tu, Ran, Liu, Hao, Wang, Meng. Droplet-Microfluidic-Based Promoter Engineering and Expression Fine-Tuning for Improved Erythromycin Production in Saccharopolyspora erythraea NRRL 23338. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY[J]. 2022, 10: http://dx.doi.org/10.3389/fbioe.2022.864977.
[14] Yang, Yi, Mao, Yufeng, Liu, Ye, Wang, Ruoyu, Lu, Hui, Li, Haoran, Luo, Jiahao, Wang, Meng, Liao, Xiaoping, Ma, Hongwu. GEDpm-cg: Genome Editing Automated Design Platform for Point Mutation Construction in Corynebacterium glutamicum. FRONTIERSINBIOENGINEERINGANDBIOTECHNOLOGY[J]. 2021, 9: http://dx.doi.org/10.3389/fbioe.2021.768289.
[15] Xiao Wen, Yue Zhang, Haijiao Cheng, Jingjing An, Yanmei Guo, Lixian Wang, Meng Wang. A CRISPR/dCas9-assisted system to clone toxic genes in Escherichia coli. BBA - GENERAL SUBJECTS[J]. 2021, [16] Zhang, Yue, Yun, Kaiyue, Huang, Huamei, Tu, Ran, Hua, Erbing, Wang, Meng. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Streptomyces lividans 66. ACS SYNTHETIC BIOLOGY[J]. 2021, 10(5): 1053-1063, http://dx.doi.org/10.1021/acssynbio.0c00563.
[17] Yu Wang, Haijiao Cheng, Yang Liu, Ye Liu, Xiao Wen, Kun Zhang, Xiaomeng Ni, Ning Gao, Liwen Fan, Zhihui Zhang, Jiao Liu, Jiuzhou Chen, Lixian Wang, Yanmei Guo, Ping Zheng, Meng Wang, Jibin Sun, Yanhe Ma. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. NATURE COMMUNICATIONS[J]. 2021, 12(1): http://dx.doi.org/10.1038/s41467-021-21003-y.
[18] Ran Tu, Yue Zhang, Erbing Hua, Likuan Bai, Huamei Huang, Kaiyue Yun, Meng Wang. Droplet-based microfluidic platform for high-throughput screening of Streptomyces. COMMUNICATIONS BIOLOGY[J]. 2021, 4(1): [19] Wang, Yu, Liu, Ye, Zheng, Ping, Sun, Jibin, Wang, Meng. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. TRENDS IN BIOTECHNOLOGYnull. 2021, 39(2): 165-180, http://dx.doi.org/10.1016/j.tibtech.2020.06.010.
[20] 黄华媚, 白立宽, 刘叶, 李俊维, 王猛, 花尔并. BE3型胞嘧啶碱基编辑器在谷氨酸棒杆菌中的开发及应用. 生物技术通报[J]. 2020, 36(3): 95-101, http://lib.cqvip.com/Qikan/Article/Detail?id=7101069107.
[21] Yu, Sili, Price, Marcus A, Wang, Yu, Liu, Yang, Guo, Yanmei, Ni, Xiaomeng, Rosser, Susan J, Bi, Changhao, Wang, Meng. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Bacillus subtilis. ACS SYNTHETIC BIOLOGY[J]. 2020, 9(7): 1781-1789, https://www.webofscience.com/wos/woscc/full-record/WOS:000551555500027.
[22] 李俊维, 刘叶, 王钰, 郁彭, 郑平, 王猛. 谷氨酸棒杆菌碱基编辑的条件优化. 生物工程学报[J]. 2020, 36(1): 143-151, http://lib.cqvip.com/Qikan/Article/Detail?id=7100862753.
[23] 李俊维, 刘叶, 王钰, 郁彭, 郑平. 谷氨酸棒杆菌碱基编辑的条件优化. 生物工程学报. 2019, 143-151, https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKMypi3qVj28LGACqMpRVR0Cx7F0z4nrArD2Er3t5qtrdbNIBBS9v4ivBJznOA7MYDvKDbHU39tsi&uniplatform=NZKPT.
[24] Xiao, Han, Zhang, Yue, Wang, Meng. Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis. TRENDS IN BIOTECHNOLOGYnull. 2019, 37(6): 618-631, http://dx.doi.org/10.1016/j.tibtech.2018.11.008.
[25] Lan, Xiaoting, Yuan, Wei, Wang, Meng, Xiao, Han. Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a Ganoderma P450 reductase. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2019, 116(12): 3301-3311, https://www.webofscience.com/wos/woscc/full-record/WOS:000494514300014.
[26] Wang, Yu, Liu, Ye, Li, Junwei, Yang, Yi, Ni, Xiaomeng, Cheng, Haijiao, Huang, Teng, Guo, Yanmei, Ma, Hongwu, Zheng, Ping, Wang, Meng, Sun, Jibin, Ma, Yanhe. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2019, 116(11): 3016-3029, [27] 崔金明, 张炳照, 马迎飞, 傅雄飞, 王猛, 刘陈立. 合成生物学研究的工程化平台. 中国科学院院刊[J]. 2018, 33(11): 1249-1257, http://ir.siat.ac.cn:8080/handle/172644/13458.
[28] Heberlig, Graham W, Brown, Jesse T C, Simard, Ryan D, Wirz, Monica, Zhang, Wei, Wang, Meng, Susser, Leah, I, Horsman, Mark E, Boddy, Christopher N. Chemoenzymatic macrocycle synthesis using resorcylic acid lactone thioesterase domains. ORGANIC & BIOMOLECULAR CHEMISTRY[J]. 2018, 16(32): 5771-5779, https://www.webofscience.com/wos/woscc/full-record/WOS:000441765600005.
[29] Wang, Yu, Liu, Ye, Liu, Jiao, Guo, Yanmei, Fan, Liwen, Ni, Xiaomeng, Zheng, Xiaomei, Wang, Meng, Zheng, Ping, Sun, Jibin, Ma, Yanhe. MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. METABOLIC ENGINEERING[J]. 2018, 47: 200-210, http://dx.doi.org/10.1016/j.ymben.2018.02.016.
[30] Liu, Yang, Liu, Ye, Wang, Meng. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering. FRONTIERS IN MICROBIOLOGY[J]. 2017, 8: https://doaj.org/article/bbe8758fc21143998f85ce2335388796.
[31] 王猛. Combined and Iterative Use of Computational Design and Directed Evolution for Protein-Ligand Binding Design. Methods in Molecular Biology. 2016, [32] Wang, Meng, Yu, Chenzhao, Zhao, Huimin. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2016, 113(3): 484-491, https://www.webofscience.com/wos/woscc/full-record/WOS:000369015100003.
[33] Wang, Meng, Yu, Chenzhao, Zhao, Huimin. Identification of an important motif that controls the activity and specificity of sugar transporters. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2016, 113(7): 1460-1467, https://www.webofscience.com/wos/woscc/full-record/WOS:000377527900008.
[34] Wang, Meng, Li, Sijin, Zhao, Huimin. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2016, 113(1): 206-215, [35] 王猛. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening. ACS synthetic biology. ACS synthetic biology. 2015, [36] Wang, Meng, Beissner, Mirko, Zhao, Huimin. Aryl-aldehyde Formation in Fungal Polyketides: Discovery and Characterization of a Distinct Biosynthetic Mechanism. CHEMISTRY & BIOLOGY[J]. 2014, 21(2): 257-263, http://dx.doi.org/10.1016/j.chembiol.2013.12.005.
[37] Wang, Meng, Zhao, Huimin. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation. ACS CATALYSIS[J]. 2014, 4(4): 1219-1225, https://www.webofscience.com/wos/woscc/full-record/WOS:000338807100023.
[38] Heberlig, Graham W, Wirz, Monica, Wang, Meng, Boddy, Christopher N. Resorcylic Acid Lactone Biosynthesis Relies on a Stereotolerant Macrocyclizing Thioesterase. ORGANIC LETTERS[J]. 2014, 16(22): 5858-5861, https://www.webofscience.com/wos/woscc/full-record/WOS:000345470000009.
[39] Luo, Yunzi, Huang, Hua, Liang, Jing, Wang, Meng, Lu, Lu, Shao, Zengyi, Cobb, Ryan E, Zhao, Huimin. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. NATURE COMMUNICATIONS[J]. 2013, 4: 2894-2894, https://www.webofscience.com/wos/woscc/full-record/WOS:000329396200012.
[40] Pinto, Atahualpa, Wang, Meng, Horsman, Mark, Boddy, Christopher N. 6-Deoxyerythronolide B Synthase Thioesterase-Catalyzed Macrocyclization Is Highly Stereoselective. ORGANIC LETTERS[J]. 2012, 14(9): 2278-2281, https://www.webofscience.com/wos/woscc/full-record/WOS:000303492200022.
[41] 王猛. Microbial synthesis of drugs and fuels via synthetic biology. Chinese Bulletin of Life Sciences. 2011, [42] 王猛. Biocatalyst development by directed evolution.. Bioresource Technology. 2011, [43] Wang, Meng, Zhou, Hui, Wirz, Monica, Tang, Yi, Boddy, Christopher N. A Thioesterase from an Iterative Fungal Polyketide Synthase Shows Macrocyclization and Cross Coupling Activity and May Play a Role in Controlling Iterative Cycling through Product Offloading. BIOCHEMISTRY[J]. 2009, 48(27): 6288-6290, https://www.webofscience.com/wos/woscc/full-record/WOS:000268137600002.
[44] Wang, Meng, Opare, Peter, Boddy, Christopher N. Polyketide synthase thioesterases catalyze rapid hydrolysis of peptidyl thioesters. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS[J]. 2009, 19(5): 1413-1415, http://dx.doi.org/10.1016/j.bmcl.2009.01.040.
[45] Wang, Meng, Boddy, Christopher N. Examining the Role of Hydrogen Bonding Interactions in the Substrate Specificity for the Loading Step of Polyketide Synthase Thioesterase Domains. BIOCHEMISTRY[J]. 2008, 47(45): 11793-11803, https://www.webofscience.com/wos/woscc/full-record/WOS:000260616900011.
[46] Wu, Qi, Wang, Meng, Chen, Zhi Chun, Lu, De Shui, Lin, Xian Fu. Enzymatic synthesis of metronidazole esters and their monosaccharide ester derivatives. ENZYMEANDMICROBIALTECHNOLOGY[J]. 2006, 39(6): 1258-1263, http://dx.doi.org/10.1016/j.enzmictec.2006.03.012.