General

Chair Professor of Chemical Engineering

Email: maoye@dicp.ac.cn

Telephone: +86-411-84379618

Address: National Engineering Laboratory for MTO, Dalian Institute of Chemical Physics, Zhongshan Road 457, 116023, Dalian, China



Research Areas


1.     Industrial Multiphase Processes Development

2.     Multiphase Reactor

3.     Multiphase Catalysis

4.     AI and Machine Learning for Multiphase Processes

Education


2000.06, Southeast University, Ph.D.

1997.03, Southeast University, M.Sc.

1994.07, Jiangsu University of Science and Technology, B.Sc.

Work Experience

2009.10-now    Dalian Institute of Chemical Physics, Chinese Academy of Sciences 

      2020-now  deputy director Division of Low-Carbon Catalysis and Engineering

      2017  Zhang Dayu Chair Professor 

      2010  Professor

      2009  Associate Professor

      2009-now   group leader Multiphase Catalytic Process Development and Scale-up

2006.10-2009.10  Shell Global Solutions International B.V., Amsterdam, FCC Process Engineer 

2006.05-2006.09  University of Twente, Faculty of Science and Technology, Research Fellow 

2005.05-2006.04  Technical University of Eindhoven, Department of Mechanical Engineering, Research Fellow 

2000.11-2005.04  University of Twente, Faculty of Chemical Technology, Research Scientist 


Publications


2023

129. Yuxin Zhang, Chengong Li, and Mao Ye. Motion of a two-dimensional neutrally buoyant circular particle in two-sided lid-driven cavity flow with thermal convection. Physics of Fluids, 2023, accepted. 

128. Junyi Yu, Hua Li, Mao Ye, and Zhongmin Liu. A knowledge-driven approach for automatic generation of reaction networks of methanol-to-olefins process. Chemical Engineering Science, 2023, accepted. 

127. Jinqiang Liang, Danzhu Liu, Shuliang Xu, and Mao Ye. Modeling and analysis of air combustion and steam regeneration in MTO processes. Chinese Journal of Chemical Engineering, 2023, accepted. 

126. Mingbin Gao, Mao Ye, and Zhongmin Liu. Emerging techniques to monitor temperature and supply heat for multiscale solid-based catalysis processesCurrent Opinion in Chemical Engineering, 2023, 42: 100969. DOI: 10.1016/j.coche.2023.100969

125. Mingbin Gao, Hua Li, Yu Tian, Junyi Yu, Mao Ye, and Zhongmin Liu. Surface diffusion barriers and catalytic activity driven by terminal groups at zeolite catalysts. ACS Catalysis, 2023, 13: 11598-11609. DOI: 10.1021/acscatal.3c01932

124. Junyi Yu, Hua Li, Mao Ye, Zhongmin Liu. A modified group contribution method for estimating thermodynamic parameters of methanol-to-olefins over SAPO-34 catalyst. Physical Chemistry Chemical Physics, 2023, 25: 21631-21639. DOI: 10.1039/D3CP01719B

123. Danzhu Liu, Jinqiang Liang, Shuliang Xu, Mao Ye. Analysis of Carbon Emissions Embodied in the Provincial Trade of China Based on an Input–Output Model and k-Means Algorithm. Sustainability, 2023, 15: 9196. DOI: 10.3390/su15129196

122. Yiwei Xie, Hua Li, Caiyi Lou, Mao Ye, and Zhongmin Liu. Quantifying molecular surface barriers and intracrystalline diffusion in nanoporous materials by zero-length column. AIChE Journal, 2023, 69: e18159. DOI: 10.1002/aic.18159

121. Wenna Zhang, Shanfan Lin, Yingxu Wei, Peng Tian, Mao Ye, and Zhongmin Liu. Cavity-controlled methanol conversion over zeolite catalysts. National Science Review, 2023, 10: nwad120. DOI: 10.1093/nsr/nwad120

120. Kai Huang, Shuanghe Meng, Tao Zhang, Mao Ye, Wuqiang Yang, and Zhongmin Liu. Study of fluidization behavior transition from Geldart B to A induced by high temperature using electrical capacitance tomography. Industrial & Engineering Chemistry Research, 2023, 62: 17201–17215. DOI: 10.1021/acs.iecr.3c00476

119. Jinqiang Liang, Danzhu Liu, Shuliang Xu, and Mao Ye. Comparison of light olefins production routes in China: Combining techno-economics and security analysis. Chemical Engineering Research and Design, 2023, 194: 225-241. DOI: 10.1016/j.cherd.2023.04.037

118. Jiamin Yuan, Mingbin Gao, Zhiqiang Liu, Xiaomin Tang, Yu Tian, Gang Ma, Mao Ye & Anmin Zheng. Hyperloop-like diffusion of long-chain molecules under confinement. Nature Communications, 2023, 14: 1735. DOI: 10.1038/s41467-023-37455-3

117. Dan Zhao, Mingbin Gao, Xinxin Tian, Dmitry E. Doronkin, Shanlei Han, Jan-Dierk Grunwaldt, Uwe Rodemerck, David Linke, Mao Ye, Guiyuan Jiang, Haijun Jiao, and Evgenii V. Kondratenko. Effect of Diffusion Constraints and ZnOx Speciation on Nonoxidative Dehydrogenation of Propane and Isobutane over ZnO-Containing Catalysts. ACS Catalysis, 2023, 13: 3356-3369. DOI: 10.1021/acscatal.2c05704

116. Xudong Fang, Shichao Peng, Mingguan Xie, Zhaopeng Liu, Zhiyang Chen, Hongchao Liu, Mao Ye, Wenliang Zhu, and Zhongmin Liu. Cooperative External Acidity and Surface Barriers of HZSM-5 in Coupling Reaction of CH3Cl and CO to Aromatics. ACS Sustainable Chemistry & Engineering, 2023, 11: 2275-2282. DOI: 10.1021/acssuschemeng.2c05822

115. Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, and Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: insight into formaldehyde. Chinese Journal of Catalysis, 2023, 46: 11-27. DOI: 10.1016/S1872-2067(22)64194-9

114. Likun Ma, Sina Kashanj, Xue Li, Shuliang Xu, David S Nobes, and Mao Ye. Experimental investigation of fluid flow around a porous cube for Reynolds numbers of 400~1400. Chemical Engineering Science, 2023, 269: 118443. DOI: 10.1016/j.ces.2022.118443

113. Mingbin Gao, Hua Li, Junyi Yu, Mao Ye, and Zhongmin Liu.Quantitative principle of shape-selective catalysis for a rational screening of zeolites for methanol-to-hydrocarbons. AIChE Journal, 2023, 69: e17881. DOI: 10.1002/aic.17881

112. Chengxiu Wang, Mengjie Luo, Xin Su, Xingying Lan, Zeneng Sun, Jinsen Gao, Mao Ye, and Jesse Zhu. A sliding-window based signal processing method for characterizing clusters in gas-solids high-density CFB reactor. Chemical Engineering Journal, 2023, 452: 139141. DOI: 10.1016/j.cej.2022.139141

111. Chengxiu Wang, Zhihui Li, Zeneng Sun, Xingying Lan, Jinsen Gao, Mao Ye, and Jesse Zhu. Visualization on the meso-scale particle flow in turbulent fluidized bed reactors with lower H0/D ratios via image processing. Chemical Engineering Journal, 2023, 452: 139124. DOI: 10.1016/j.cej.2022.139124

 

2022

110. Chang Wang, Liu Yang, Mingbin Gao, Xue Shao, Weili Dai, Guangjun Wu, Naijia Guan, Zhaochao Xu, Mao Ye, and Landong Li. Directional construction of active naphthalenic species within SAPO-34 crystals toward more efficient methanol-to-olefin conversion. Journal of the American Chemical Society, 2022, 144: 2140821416. DOI: 10.1021/jacs.2c104950

109. Xingchi Liu, Aiqi Zhu, Lina YangJi Xu, Hua Li, Wei Ge, and Mao Ye. Numerical simulation of commercial MTO fluidized bed reactor with a coarse-grained discrete particle method EMMS-DPM. Powder Technology, 2022, 406: 117576. DOI: 10.1016/j.powtec.2022.117576

108. Chengxiu Wang, Xin Su, Mengjie Luo, Xingying Lan, Jinsen Gao, Chunming Xu, Mao Ye, and Jesse Zhu. Flow characteristics in a pilot-scale circulating fluidized bed with high solids flux up to 1800 kg/m2s. Powder Technology, 2022, 405: 117542. DOI: 10.1016/j.powtec.2022.117542

107. Shichao Peng, Yiwei Xie, Linying Wang, Wenjuan Liu, Hua Li, Zhaochao Xu, Mao Ye, and Zhongmin Liu. Exploring the Inter and Intracrystal Diversity of Surface Barriers in Zeolites on Mass Transport by Using SuperResolution Microimaging of TimeResolved Guest Profiles. Angewandte Chemie International Edition, 2022, 61e202203903. DOI: 10.1002/anie.202203903

106. Chunhua Zhang, Bona Lu, Wei Wang, Mengxi Liu, Chunxi Lu, and Mao Ye.  Reactive CFD simulation of industrial MTO fluidized beds by coupling population balance model. Chemical Engineering Journal, 2022, 445: 136849. DOI: 10.1016/j.cej.2022.136849

105. Likun Ma, Qiang Guo, Xue Li, Shuliang Xu, Jibin Zhou, Mao Ye, and Zhongmin Liu. Drag correlations for flow past monodisperse arrays of spheres and porous spheres based on symbolic regression: effects of permeability. Chemical Engineering Journal, 2022, 445: 136653. DOI: 10.1016/j.cej.2022.136653

104. Chengxiu Wang, Zhihui Li, Jianjin Wei, Xingying Lan, Mao Ye, and Jinsen Gao.

Quantitative measurement of solids holdup for Group A and B particles using image and its application in fluidized bed reactor. Processes, 2022, 10: 610. DOI: 10.3390/pr10030610

103. Likun Ma, Sina Kashanj, Shuliang Xu, Jibin Zhou, David Nobes, and Mao Ye. Flow reconstruction and prediction based on small particle image velocimetry experimental datasets with convolutional neural networks. Industrial & Engineering Chemistry Research, 2022, 61: 85048519. DOI: 10.1021/acs.iecr.1c04704

102. Deyang Gao, Xue Li, Baolin Hou, Fang Lu, Mao Ye, Aiqin Wang, and Xiaodong Wang. Study of bubble behavior in high-viscosity liquid in a pseudo-2D column using high-speed imaging. Chemical Engineering Science, 2022, 252: 117532. DOI: 10.1016/j.ces.2022.117532

101. Anqi Li, Shuanghe Meng, Kai Huang, Wuqiang Yang, and Mao Ye. On the concentration models in electrical capacitance tomography for gas-fluidized bed measurements. Chemical Engineering Journal, 2022, 435: 134989. DOI: 10.1016/j.cej.2022.134989

100. Jibin Zhou, Mao Ye, and Zhongmin Liu. Towards a general correlation for minimum fluidization velocity in gas-fluidized beds: based on a database mining from the literature. Chemical Engineering Science, 2022, 251: 117455. DOI: 10.1016/j.ces.2022.117455

99. Chengxiu Wang, Xingying LanZeneng SunMeiyu HanJinsen GaoMao Ye, and Jesse Zhu. Cluster identification by a k-means algorithm-assisted imaging method in a laboratory-scale circulating fluidized bed. Industrial & Engineering Chemistry Research, 2022, 61: 942-956. DOI: 10.1021/acs.iecr.1c03648 

98. Shichao Peng, Hua Li, Wenjuan Liu, Junyi Yu, Zhaochao XuMao Yeand Zhongmin Liu. Reaction rate enhancement by reducing surface diffusion barriers of guest molecules over ZSM-5 zeolites: a structured illumination microscopy study. Chemical Engineering Journal, 2022, 430: 132760. DOI: 10.1016/j.cej.2021.132760 

97. Qiang Guo, Alireza Bordbar, Likun Ma, Yaxiong Yu, Shuliang Xu, Christopher M. Boyce, and Mao Ye. A CFD-DEM study of the solid-like and fluid-like states in the homogeneous fluidization regime of Geldart A particles. AIChE Journal, 2022, 68: e17420. DOI: 10.1002/aic.17420

 96. 张玉黎叶茂肖睿葛立超. 垃圾焚烧发电耦合电转气制备合成天然气工艺集成与优化

化工进展2022, 411677-1688. DOI: 10.16085/j.issn.1000-6613.2021-2272 

95. 梁金强刘丹竹徐庶亮叶茂,刘中民. “双碳”目标下能源安全定量评价方法. 化工进展, 2022, 41: 1622-1633. DOI: 10.16085/j.issn.1000-6613.2021-2255

94. 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究. 化工学报202273: 2662-2668. DOI: 10.11949/0438-1157.20220080

93. 安怀清周吉彬张今令张涛叶茂,刘中民. 再生时间对甲醇制烯烃水蒸气再生过程中SAPO-34催化剂性能的影响. 化工进展202241221-226. DOI: 10.16085/j.issn.1000-6613.2021-0222

 

2021

92.  Jibin Zhou, Duiping Liu, Mao Ye, Zhongmin Liu. Data-driven prediction of minimum fluidization velocity in gas-fluidized beds using data extracted by text mining. Industrial & Engineering Chemistry Research, 2021, 6013727-13739. DOI: 10.1021/acs.iecr.1c02307

91.  Jieqiong Qin, Haodong Shi, Kai Huang, Pengfei Lu, Pengchao Wen, Feifei Xing, Bing Yang, Mao Ye, Yan Yu, and Zhong-Shuai Wu. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nature Communications, 2021, 12: 5786. DOI: 10.1038/s41467-021-26032-1

90. Chunhua Zhang, Bona Lu, Xiaoshuai Yuan, Hua Li, Mao Ye, and Wei Wang. Reactive simulation of industrial methanol-to-olefins fluidized bed reactors and parameter analysis. Powder Technology, 2021, 393: 681-691. DOI: 10.1016/j.powtec.2021.08.015

89.  Jiajia Liu, Chenggong Li, Yunxin Zhang, Mao Ye, and Zhongmin Liu. Effect of confinement on the rotation of a two-dimensional elliptical porous particle in shear flow. Physics of Fluids, 2021, 33: 083317. DOI: 10.1063/5.00546600

88.  Huaiqing An, Hua Li, Jibin Zhou, Jinling Zhang, Tao Zhang, Mao Ye, Zhongmin Liu. Kinetics of steam regeneration of SAPO-34 zeolite catalyst in methanol-to-olefins (MTO) process. Chinese Journal of Chemical Engineering, DOI: 10.1016/j.cjche.2021.07.009

87.  Liu Yang, Chang Wang, Lina Zhang, Weili Dai, Yueying Chu, Jun Xu, Guangjun Wu, Mingbin Gao, Wenjuan Liu, Zhaochao Xu, Pengfei Wang, Naijia Guan, Michael Dyballa, Mao Ye, Feng Deng, Weibin Fan, and Landong Li. Stabilizing the framework of SAPO-34 zeolite towards long-term methanol-to-olefins conversion. Nature Communications, 2021, 12: 4661. DOI: 10.1038/s41467-021-24403-2

86.  Jingjing Shen, Shuanghe Meng, Wuqiang Yang, and Mao Ye. Excitation strategies for 3D electrical capacitance tomography sensors. IEEE Transactions on Instrumentation & Measurement, 2021,70: 4504409. DOI: 10.1109/TIM.2021.3075038

85.  Chengxiu Wang, Xiao Yang, Min Wang, Jiazhi Zhang, Xingying Lan, Jinsen Gao, Mao Ye, and Jesse Zhu, Particle velocity distribution and its prediction in a 14 m two-dimensional circulating fluidized bed riser. Industrial & Engineering Chemistry Research, 2021, 60: 1901-1911. DOI: 10.1021/acs.iecr.0c05330

84.  Jibin Zhou, Mingbin Gao, Jinling Zhang, Wenjuan Liu, Tao Zhang, Hua Li, Zhaochao Xu, Mao Ye, and Zhongmin Liu. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nature Communications, 2021,12: 17. DOI: 10.1038/s41467-020-20193-1

83.  Jingjing Shen, Shuanghe Meng, Jing Wang, Wuqiang Yang, and Mao Ye. Study on the shape of staggered electrodes for 3D electrical capacitance tomography sensors. IEEE Transactions on Instrumentation & Measurement, 2021,70: 4502110. DOI: 10.1109/TIM.2020.3041104

82.  Mao Ye, Peng Tian, and Zhongmin Liu. DMTO: A Sustainable Methanol-to-Olefins Technology. Engineering, 2021, 7: 17-21. DOI: 10.1016/j.eng.2020.12.001

81.   Chunyu WangChenggong Liand Mao Ye. Numerical simulation on fluid flow past a circular heterogeneous porous particle. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2021,21: 658-670, (in Chinese). DOI: 10.12034/j.issn.1009-606X.220213

 

2020

80.   Shichao PengMingbin GaoHua LiMiao YangMao Yeand Zhongmin Liu. Control of surface barriers in mass transfer to modulate methanoltoolefins reaction over SAPO34 zeolites. Angewandte Chemie International Edition, 2020, 59: 21945-21948. DOI: 10.1002/anie.202009230

79.   Yong Yang, Jian Xu, Zhenyu Liu, Qinghua Guo, Mao Ye, Gang Wang, Junhu Gao, Junwu Wang, Zhan Shu, Wei Ge, Zhongmin Liu, Fucheng Wang, and Yong-Wang Li. Progress in coal chemical technologies of China. Review in Chemical Engineering, 2020, 36: 21-66. DOI: 10.1515/revce-2017-0026

78.   Qiang Guo, Xue Li, Baolin Hou, Gregoire Mariethoz, Mao Ye, Wuqiang Yang, and Zhongmin Liu. A novel image reconstruction strategy for ECT: combining two algorithms with a graph cut method. IEEE Transactions on Instrumentation & Measurement, 2020, 69: 804-814. DOI: 10.1109/TIM.2019.2905282

77.   Mingbin Gao, Hua Li, Wenjuan Liu, Zhaochao Xu, Shichao Peng, Miao Yang, Mao Yeand Zhongmin Liu. Imaging spatiotemporal evolution of molecules and active sites in zeolite catalyst during methanol-to-olefins reaction. Nature Communications, 2020, 11: 3641. DOI: 10.1038/s41467-020-17355-6

76.   Deyang Gao, Baolin Hou, Xue Li, Mao Ye, Aiqin Wang, Xiaodong Wang, and Tao Zhang. Capturing the flow field of bubbly flows using BTV in high viscosity liquid. Chemical Engineering Science, 2020, 227: 115943. DOI: 10.1016/j.ces.2020.115943

75.  Mingbin Gao, Hua Li, Mao Ye, and Zhongmin Liu. A general approach for predicting intracrystalline diffusivities and adsorption entropies in nanoporous materials. AIChE Journal, 2020, 66: e16991. DOI: 10.1002/aic.16991

74.   Likun Ma, Shuliang Xu, Xue Li, Qiang Guo, Deyang Gao, Ya Ding, Mao Ye, and Zhongmin Liu. Particle tracking velocimetry of porous sphere settling under gravity: preparation of the model porous particle and measurement of drag coefficients. Powder Technology, 2020, 360: 241-252. DOI: 10.1016/j.powtec.2019.09.058

73.  Jianping Zhao, Jibin Zhou, Mao Ye, and Zhongmin Liu. Kinetics study on air regeneration of industrial MTO catalyst. Industrial & Engineering Chemistry Research, 202059: 11953-11961. DOI: 10.1021/acs.iecr.0c00153

72.   Jiajia Liu, Chenggong Li, Mao Ye, and Zhongmin Liu. The rotation of 2D elliptical porous particles in a simple shear flow with fluid inertia. Physics of Fluids, 2020, 32: 043305. DOI: 10.1063/1.5145330

71.  Haodong Shi, Jieqiong Qin, Kai Huang, Pengfei Lu, Chuanfang John Zhang, Yanfeng Dong, Mao Ye, Zhongmin Liu, and Zhong-Shuai Wu. Two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as dual-functional ion redistributor for dendrite-free Lithium metal anodes. Angewandte Chemie International Edition, 2020, 59: 12147-12153. DOI: 10.1002/anie.202004284

70.  Jingjing Shen, Shuanghe Meng, Mao Ye, Wuqiang Yang, and Zhongmin Liu. 3D image reconstruction using an ECT sensor with a single layer of electrodes. Measurement Science and Technology, 2020, 31: 085106. DOI: 10.1088/1361-6501/ab82c0

69.  Miao Yang, Bing Li, Mingbin Gao, Shanfan Lin, Ye Wang, Shutao Xu, Xuebin Zhao, Peng Guo, Yingxu Wei, Mao Ye, Peng Tian, and Zhongmin Liu. High propylene selectivity in methanol conversion over a small-pore SAPO molecular sieve with ultra-small cage. ACS Catalysis, 2020, 10: 3741-3749. DOI: 10.1021/acscatal.9b04703

68.  Runjia Liu, Zongyan Zhou, Rui Xiao, Mao Ye, and Aibing Yu. Particle velocity distribution function around a single bubble in gas-solid fluidized bed. Powder Technology, 2020, 361: 33-44. DOI: 10.1016/j.powtec.2019.11.007

67.  Jibin Zhou, Jianping Zhao, Jinling Zhang, Tao Zhang, Mao Ye, and Zhongmin Liu. Regeneration of catalysts deactivated by coke deposition: A review. Chinese Journal of Catalysis, 2020, 41: 1048-1061. DOI: 10.1016/S1872-2067(20)63552-5

66. Chengxiu Wang, J. Li, Xin Su, X. Wu, Xingying Lan, Mao Ye, Jinsen Gao. Distribution of Solid Holdup and Particle Velocity in a High Density Gas-solids Circulating Fluidized Bed Downer. Huaxue Fanying Gongcheng Yu Gongyi/Chemical Reaction Engineering and Technology. 2020,36: 17-25. (in Chinese) DOI: 10.11730/j.issn.1001-7631.2020.01.0017.09

65.  Yuli ZhangShuliang Xuand Mao Ye. A numerical investigation on alkylation of toluene with methanol in fluidized bed reactor. Huagong Jinzhan / Chemical Industry and Engineering Progress, 2020, 39: 5057-5065 (in Chinese). DOI: 10.16085/j.issn.1000-6613.2020-1946

64. Zhengxi YuShuliang XuTao Zhang, Mao Y, and Zhongmin Liu. Research progress and development trend of para-xylene production technology. Huagong Jinzhan / Chemical Industry and Engineering Progress, 2020, 39: 4984-4992 (in Chinese). DOI: 10.16085/j.issn.1000-6613.2020-1437

63.  Chao Song, Mao Ye, and Zhongmin Liu. CFD-DEM simulation of catalyst regeneration in methanol to olefins process. Zhongguo Fengti Jishu / China Powder Science and Technology, 2020, 26: 39-45 (in Chinese). DOI: 10.13732/j.issn.1008-5548.2020.03.006

 

2019

62.  Xiaoshuai Yuan, Hua Li, Mao Ye, and Zhongmin Liu. Study of the coke distribution in MTO fluidized bed reactor with MP-PIC approach. Canadian Journal of Chemical Engineering, 2019, 97: 500-510. DOI: 10.1002/cjce.23239

61.   Xiaoshuai Yuan, Hua Li, Mao Ye, and Zhongmin Liu. Kinetic modeling of methanol to olefins process over SAPO-34 catalyst based on the dual-cycle reaction mechanism. AIChE Journal, 2019, 65: 662-674. DOI: 10.1002/aic.16439

60.   Mingbin Gao, Hua Li, Miao Yang, Jibin Zhou, Xiaoshuai Yuan, Peng Tian, Mao Ye, and Zhongmin Liu. A modeling study on reaction and diffusion in MTO process over SAPO-34 zeolites. Chemical Engineering Journal, 2019, 377: 119668. DOI: 10.1016/j.cej.2018.08.054

59.   Kai Huang, Shuanghe Meng, Qiang Guo, Wuqiang Yang, Tao Zhang, Mao Ye, and Zhongmin Liu. Effect of electrode length of electrical capacitance tomography sensor on gas-solids fluidized bed measurement. Industrial & Engineering Chemistry Research, 2019, 58: 21827-21841. DOI: 10.1021/acs.iecr.9b03988

58.   Jiajia Liu, Chenggong Li, Mao Ye, and Zhongmin Liu. On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number. Powder Technology, 2019, 354: 108-114. DOI: 10.1016/j.powtec.2019.05.068

57.   Jibin Zhou, Yuchun Zhi, Jinling Zhang, Zhiqiang Liu, Tao Zhang, Yanli He, Anmin Zheng, Mao Ye, Yingxu Wei, and Zhongmin Liu. Pre-situated Coke-determined mechanistic route for ethene formation in methanol to olefins process. Journal of Catalysis, 2019, 377: 153-162. DOI: 10.1016/j.jcat.2019.06.014

56.   Mingbin Gao, Hua Li, Mao Ye, Miao Yang, Pengfei Wu, Peng Tian, and Zhongmin Liu. Direct quantification of surface barriers for mass transfer in nanoporous crystalline materials. Communication Chemistry, 2019, 2: 43. DOI: 10.1038/s42004-019-0144-1

55.  Qiang Guo, Mao Ye, Wuqiang Yang, and Zhongmin Liu. A machine learning approach for electrical capacitance tomography measurement of gas-solids fluidized beds. AIChE Journal, 2019, 65: e16583. DOI: 10.1002/aic.16583

54.   Hua Li, Xiaoshuai Yuan, Mingbin Gao, Mao Ye, and Zhongmin Liu. Study of catalyst coke distribution based on population balance theory: application to methanol to olefins process. AIChE Journal, 2019, 65: 1149-1161. DOI: 10.1002/aic.16518

53. Jianping ZhaoYinfeng Zhao, Mao Yeand Zhongmin Liu. Regeneration Kinetic Study of Coked MTO Catalyst in O2&CO2. Huaxue Fanying Gongcheng Yu Gongyi / Chemical Reaction Engineering and Technology, 2019, 35: 410-415 (in Chinese). DOI: 10.11730/j.issn.1001-7631.2019.05.0410.06  

52.  Mao YeWenliang ZhuShuliang Xuand Zhongmin Liu. Coordinated Development of Coal Chemical and Petrochemical Industries in China. Bulletin of Chinese Academy of Sciences, 2019, 4: 417-425 (in Chinese). DOI: 10.16418/j.issn.1000-3045.2019.04.006 

 

2018

51.  Jibin Zhou, Jinling Zhang, Yuchun Zhi, Jianping Zhao, Tao Zhang, Mao Ye, and Zhongmin Liu. Partial regeneration of spent SAPO-34 catalyst in methanol to olefins process via steam gasification. Industrial & Engineering Chemistry Research. 2018, 57: 1733817347. DOI: 10.1021/acs.iecr.8b04181

50.  Kai Huang, Shuanghe Meng, Qiang Guo, Mao Ye, Jinging Shen, Tao Zhang, Wuqiang Yang, and Zhongmin Liu. High-temperature electrical capacitance tomography for gas-solids fluidised beds. Measurement Science and Technology. 2018, 29: 104002. DOI: 10.1088/1361-6501/aad641

49.  Runjia Liu, Rui Xiao, Mao Ye, and Zhongmin Liu. Analysis of particle rotation in fluidized bed by use of discrete particle model. Advanced Powder Technology. 201829: 1655-1663. DOI: 10.1016/j.apt.2018.03.032

48.  Jiawei Zhong, Jingfeng Han, Yingxu Wei, Shutao Xu, Yanli He, Yimin Zheng, Mao Ye, Xinwen Guo, Chunshan Song, and Zhongmin Liu. Increasing the selectivity to ethylene in MTO reaction by enhancing diffusion limitation in the shell layer of SAPO-34 catalyst. Chemical Communications. 2018, 54: 3146-3149. DOI: 10.1039/C7CC09239C

47.  Jingyuan Zhang, Bona Lu, Feiguo Chen, Hua Li, Mao Ye, and Wei Wang. Simulation of a large methanol-to-olefins fluidized bed reactor with consideration of coke distribution. Chemical Engineering Science, 2018, 189: 212-220. DOI: 10.1016/j.ces.2018.05.056

46.  Qiang Guo, Shuanghe Meng, Yinfeng Zhao, Likun Ma, Dehu Wang, Mao Ye, Wuqiang Yang, and Zhongmin Liu. Experimental verification of solid-like and fluid-like states in the homogeneous fluidization regime of Geldart A particles. Industrial & Engineering Chemistry Research, 2018, 57: 2670-2686. DOI: 10.1021/acs.iecr.7b04559

45.  Qiang Guo, Shuanghe Meng, Dehu Wang, Yinfeng Zhao, Mao Ye, Wuqiang Yang, and Zhongmin Liu. Investigation of gas-solids bubbling fluidized bed by electrical capacitance tomography with a modified Tikhonov regularization reconstruction technique. AIChE Journal, 2018, 64: 29-41. DOI: 10.1002/aic.15879

44. Jiaming Qiu, Yong Lu, Mianzhao Zhang, Rui Xiao, and Mao Ye. Research on transport disengaging height of catalyst particles in fluidized bed reactor for methanol to olefins based on image method. Huagong Zhuangbei Jisu / Chemical Equipment Technology, 2018, 39: 1-7 (in Chinese). DOI: 10.16759/j.cnki.issn.1007-7251.2018.04.001

43. Xing Xu, Yinfeng Zhao, Mao Ye, and Zhongmin Liu. Study on air regeneration of DMTO catalyst. Gongye Cuihua / Industrial Catalysis. 2018, 26: 212-220 (in Chinese). DOI: 10.3969/j.issn.1008-1143.2018.07.011

 

2017

42. Bona Lu, Jingyuan Zhang, Hao Luo, Wei Wang, Hua Li, Mao Ye, Zhongmin Liu, and Jinghai Li. Numerical simulation of scale-up effects of MTO fluidized bed reactors. Chemical Engineering Science, 2017, 171: 244-255. DOI: 10.1016/j.ces.2017.05.007

41. Xiaoshuai Yuan, Hua Li, Mao Ye, and Zhongmin Liu, 2017. Comparative study of MTO kinetics over SAPO-34 catalyst in fixed and fluidized bed reactors. Chemical Engineering Journal, 329: 35-44. DOI: 10.1016/j.cej.2017.04.041

40. Jingai Hao, Yinfeng. Zhao, Mao Ye, and Zhongmin Liu. Attrition of methanol to olefins catalyst in jet cup. Powder Technology, 2017, 316: 79-86. DOI: 10.1016/j.powtec.2016.12.091

39. Yong Lu, Zhenbo Tong, D. H. Glass, W. J. Easson, and Mao Ye. Experimental and numerical study of particle velocity distribution in the vertical pipe after a 90o elbow. Powder Technology, 2017, 314: 500-509. DOI: 10.1016/j.powtec.2016.11.050

38. Yuli Zhang, Rui Xiao, Mao Ye, and Zhongmin Liu. A numerical study of the bubble induced pressure fluctuation in gas-fluidized beds. Powder Technology, 2017, 314: 387-399. DOI: 10.1016/j.powtec.2016.08.059

 

2016

37. Chenggong Li, Mao Ye, and Zhongmin Liu. On the rotation of porous particle in simple shear flow with fluid inertia. Journal of Fluid Mechanics, 2016, 808: R3. DOI: 10.1017/jfm.2016.670

36. Li-Tao Zhu, Mao Ye, Zhen-Hong Luo. Application of filtered model for reacting gas-solid flows and optimization in a large-scale methanol-to-olefin fluidized-bed reactor. Industrial & Engineering Chemistry Research, 2016, 55: 11887-11899. DOI: 10.1021/acs.iecr.6b02819

35. Hua Li, Mao Ye, and Zhongmin Liu. A multi-region model for reaction-diffusion process within a porous catalyst pellet. Chemical Engineering Science, 2016, 147: 1-12. DOI: 10.1016/j.ces.2016.03.004

34. Bona Lu, Hao Luo, Hua Li, Wei Wang, Mao Ye, Zhongmin Liu, and Jinghai Li. Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model. Chemical Engineering Science, 2016, 143: 341-350. DOI: 10.1016/j.ces.2016.01.010

33. Jingai Hao, Yinfeng Zhao, Mao Ye, and Zhongmin Liu. Influence of temperature on fluidized-bed catalyst attrition behavior. Chemical Engineering & Technology, 2016, 39: 927-934. DOI: 10.1002/ceat.201500660 

 32. Q. Luo, Y. Zhang, Y. Zhao, M. Ye, and Z. Liu. Measuring minimum fluidization velocity of Geldart A particles by use of electrical capacitance tomography. Zhongnan Daxue Xuebao / Journal of Central South University. 2016, 47: 3916-3921. (in Chinese). DOI: 10.11817/j.issn.1672-7207.2016.11.039

 

2015

31. Jingai Hao, Yinfeng Zhao, Mao Ye, and Zhongmin Liu. Attrition of methanol to olefins catalyst with high-velocity air jets at elevated temperature. Advanced Powder Technology, 2015, 26: 734-741. DOI: 10.1016/j.apt.2015.03.010

30. Lei Ying, Xiaoshuai Yuan, Mao Ye, Youwei Cheng, Xi Li, and Zhongmin Liu. A seven lumped kinetic model for industrial catalyst in DMTO process. Chemical Engineering Research and Design, 2015, 100: 179-191. DOI: 10.1016/j.cherd.2015.05.024

29. Lei Ying, Mao Ye, Youwei Cheng, and Xi Li. Characteristics of coke deposition over a SAPO-34 catalyst in the methanol-to-olefins reaction. Petroleum Science and Technology, 2015, 33: 984-991. DOI: 10.1080/10916466.2015.1030081

28. Peng Tian, Yingxu Wei, Mao Ye, and Zhongmin Liu. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catalysis, 2015, 5: 1922-1938. DOI: 10.1021/acscatal.5b00007

27. Yuli Zhang, Yinfeng Zhao, Mao Ye, Rui Xiao, and Zhongmin Liu. Emulsion phase expansion of Geldart A particles in bubbling fluidized bed methanation reactors: a CFD-DEM study. Powder Technology, 2015, 275: 199-210. DOI: 10.1016/j.powtec.2015.01.064

 

2014

26. Q. Luo, Y. Zhao, M. Ye, and Z. Liu. Application of electrical capacitance tomography for gas-solid fluidized bed measurement. Huagong Xuebao / CIESC Journal, 2014, 65: 2504-2512. (in Chinese). DOI: 10.3969/j.issn.0438-1157.2014.07.012

25. Z. Liu, Y. Liu, M. Ye, L. Qiao, L. Shi, and X. Ma. Process technology for DMTO unit with a capacity of 1.8 MM TPY methanol feed and unit features. Lianyou Jishu Yu Gongcheng / Petroleum Refinery Engineering, 2014, 44: 1-6 (in Chinese).

 

2013

24. Yinfeng Zhao, Hua Li, Mao Ye, and Zhongmin Liu. 3D numerical simulation of a large scale MTO fluidized bed reactor. Industrial & Engineering Chemistry Research, 2013, 52: 11354-11364. DOI: 10.1021/ie303467k

 

Before 2013

23. M. Ye, J. Wang, M.A. van der Hoef, and J.A.M. Kuipers. Two-fluid modeling of Geldart A particles in gas-fluidized beds. Particuology, 2008, 6: 540-548. DOI: 10.1016/j.partic.2008.07.005

22. G. Czok, Mao Ye, J.A.M. Kuipers, and J. Werther, 2005. Modeling of chemical vapor deposition in a fluidized bed reactor based on discrete particle simulation. International Journal of Chemical Reactor Engineering, 2005, 3: A57. DOI: 10.2202/1542-6580.1234

21. B. Potic, S.R.A. Kersten, Mao Ye, M.A. van der Hoef, J.A.M. Kuipers, and W.P.M. van Swaaij. Fluidization with hot compressed water in micro-reactors. Chemical Engineering Science, 2005, 60: 5982-5990. DOI: 10.1016/j.ces.2005.04.047

20. Mao Ye, M.A. van der Hoef, and J.A.M. Kuipers. The effects of particle and gas properties on the fluidization of Geldart A particles. Chemical Engineering Science, 2005, 60: 4567-4580. DOI: 10.1016/j.ces.2005.03.017

19. G.J. Finnie, N.P. Kruyt, M. Ye, C. Zeilstra, and J.A.M. Kuipers. Longitudinal and transverse mixing in rotary kilns: a discrete element method approach. Chemical Engineering Science, 2005, 60: 4083-4091. DOI: 10.1016/j.ces.2004.12.048

18. Mao Ye, M.A. van der Hoef, and J.A.M. Kuipers, 2005. From discrete particle model to a continuous model of Geldart A particles. Chemical Engineering Research and Design, 2005, 83: 833-843. DOI: 10.1205/cherd.04341

17. Mao Ye, M.A. van der Hoef, and J.A.M. Kuipers. A numerical study of fluidization behavior of Geldart A particles using discrete particle model. Powder Technology, 2004, 139: 129-139. DOI: 10.1016/j.powtec.2003.10.012

16. Yong Lu, Mao Ye, Boyou Zhu, and Shimin Wang. An iterative algorithm for inverse diesel spray droplet distribution by light scattering. Jiguang Zazhi / Laser Journal, 2001, 22: 51-54 (in Chinese). DOI: 10.3969/j.issn.0253-2743.2001.05.018

15. Mao Ye, Shimin Wang, and Yiqian Xu. Inverse technique devised from modification of annealing-evolution algorithm for particle sizing by light scattering. Powder Technology, 1999, 104: 80-83. DOI: 10.1016/S0032-5910(99)00043-1

14. Mao Ye, Shimin Wang, Yong Lu, Tao Hu, Zhen Zhu, and Yiqian Xu. Inversion of particle-size distribution from angular light-scattering data with genetic algorithms. Applied Optics, 1999, 38: 2677-2686. DOI: 10.1364/AO.38.002677

13. Mao Ye, Shimin Wang, and Yiqian Xu. An improved inverse genetic algorithm for particle sizing by light scattering method. Gongcheng Re Wuli Xuebao / Journal of Engineering Thermophysics, 1999, 20: 632-636 (in Chinese)

12. Mao Ye, Zhen Zhu, Yong Lu, Shimin Wang, and Yiqian Xu. Inversion of particle size distribution from light scattering data with a stochastic method. Ranshao Kexue Yu Jishu / Journal of Combustion Science and Technology, 1999, 5: 76-82 (in Chinese)

11. Shimin Wang, Zhen Zhu, Mao Ye, Yong Lu, Yonggang Lu, and Yiqian Xu. Two improved numerical algorithms of Mie theory in the particle sizing by light scattering method. Jiliang Xuebao / Acta Metrologica Sinica, 1999, 20: 279-285 (in Chinese). DOI: 10.3321/j.issn:1000-1158.1999.04.008

10. Yong Lu, Mao Ye, Zhen Zhu, and Shimin Wang. Measuring the dust concentration by two beam laser optics. Journal of Southeast University (Natural Science Edition), 1999, 29: 69-73 (in Chinese). DOI: 10.3321/j.issn:1001-0505.1999.01.014

9.  Zhen Zhu, Mao Ye, Yong Lu, Yonggang Lu, Tao Hu, and Shimin Wang. High precise algorithm of Mie scattering in the particle sizing by light scattering. Guang Dianzi Jiguang / Journal of Optoectronics Laser, 1999, 2: 135-138 (in Chinese). DOI: 10.3321/j.issn:1005-0086.1999.02.013

8. Mao Ye, Shimin Wang, Deshu Zhu, Shouguang Yao, Tao Hu, Yong Lu, and Xiaowei Zhang. Determining droplet size distribution by light scattering in the shock test of turbine blades. Huadong Chuanbo Gongye Xueyuan Xuebao / Journal of East China Shipbuilding Institute, 1998, 6: 18-23 (in Chinese)

7. Mao Ye, Yong Lu, Tao Hu, Shimin Wang, Yiqian Xu. In-situ measurement of droplet size distribution by light scattering method. Wuhan University Journal of Natural Sciences, 1998, 3: 418-422. DOI: 10.1007/BF02830042

6. Keting Gui, Yuhong Zhi, Mao Ye, and Mingheng Shi. Experimental investigation of aerosol filtration in a magnetically stabilized fluidized bed. Huangjing Kexue / Environmental Science, 1998, 6: 14-17 (in Chinese)

5. Zhen Zhu, Shimin Wang, Mao Ye, Yonggang Lu, and Yong Lu. Correction of forward light scattering extinction measurement in particles sizing. Jiguang Zazhi/Laser Journal, 1998, 19: 32-35 (in Chinese). DOI: 10.14016/j.cnki.jgzz.1998.06.009

4. Zhen Zhu, Shimin Wang, Mao Ye, and Yomggang Lu. Monitoring particle size distribution and mass concentration of dust emission by use of an optical particle counter. Nengyuan Yanjiu Yu Liyong / Energy Research and Utilization, 1998, 4: 24-26 (in Chinese)

3. Yong Lu, Mao Ye, Zhen Zhu, Shimin Wang, and Daxin Xu. In-situ measuring the particle mean size and dust concentration by near-forward small angle light scattering. Journal of Southeast University, 1998, 2: 45-50

2. Yong Lu, Shimin Wang, Mao Ye, and Tao Hu. An improved light extinction method applied to in-situ measurement of particle size and mass concentration in dust emission. Nengyuan Yanjiu Yu Liyong / Energy Research and Utilization, 1997, 6: 8-11 (in Chinese)

1. Shimin Wang, Yong Lu, and Mao Ye. Measurement of the particle mean size by the ratio of the scattered light intensity at small angles near-forward. Wuhan Daxue Xuebao / Journal of Wuhan University (Natural Science Edition). 1997, 7: 691-696 (in Chinese). DOI: 10.14188/j.1671-8836.1997.05.027

 

Books and chapters

4.   M. Ye, H. Li, Y. Zhao, T. Zhang, Z. Liu, MTO process development: The key of mesoscale studies, Advances in Chemical Engineering, 2016, 47: 279-335

3.   Z. Liu, Y. Liu, P. Tian, M. Ye, Y. Wei, et al., Methanol to olefins, Science Press, Beijing, China, 2015

2.   M.A. van der Hoef, M. Ye, M. van Sint Annaland, A.T. Andrews, S. Sundaresan, J.A.M. Kuipers, Multi-scale modeling of gas-fluidized beds. Advances in Chemical Engineering. 2006, 31: 65-149

1.   M. YeMulti-level modeling of dense gas-solid two-phase flows, Ipskamp PrintPartner, Enschede, The Netherlands, 2005