基本信息
牛凌峰 女 硕导 经济与管理学院
电子邮件: niulf@ucas.ac.cn
通信地址: 北京市海淀区中关村东路80号中国科学院青年公寓6号楼215室
邮政编码: 100190
电子邮件: niulf@ucas.ac.cn
通信地址: 北京市海淀区中关村东路80号中国科学院青年公寓6号楼215室
邮政编码: 100190
研究方向
1. 最优化的理论、方法及其应用;
2. 数学规划在机器学习和数据挖掘中的应用
2. 数学规划在机器学习和数据挖掘中的应用
招生信息
招收最优化、机器学习、大数据挖掘方向的研究生
招生专业
070105-运筹学与控制论
120100-管理科学与工程
120100-管理科学与工程
招生方向
最优化的理论、方法及其应用
数据挖掘
数据挖掘
教育背景
2004-09--2009-06 中国科学院数学与系统科学研究院 理学博士
2000-09--2004-07 西安交通大学信息与计算科学专业 理学学士
2000-09--2004-07 西安交通大学信息与计算科学专业 理学学士
学历
中国科学院数学与系统科学研究院 -- 研究生
学位
中国科学院数学与系统科学研究院 -- 博士
工作经历
2007.4 - 2007.9 德国IKonrad-Zuse-Zentrum for Information Berlin 研究所,访问学者;
2009.7 - 现在 中科院虚拟经济与数据科学研究中心 助理研究员
2009.7 - 现在 中科院虚拟经济与数据科学研究中心 助理研究员
工作简历
2012-05~现在, 中国科学院研究生院虚拟经济与数据科学研究中心, 副研究员
2009-07~2012-05,中国科学院研究生院虚拟经济与数据科学研究中心, 助理研究员
2009-07~2012-05,中国科学院研究生院虚拟经济与数据科学研究中心, 助理研究员
社会兼职
2009-05-15-今,中国科学院数学与系统科学研究院实用优化中心成员,
教授课程
实用最优化算法及其应用
出版信息
发表论文
[1] Anda Tang, Lingfeng Niu, Jianyu Miao, Peng Zhang. Training Compact DNNs with ℓ1/2 Regularization. Pattern Recognit.[J]. 2023, [2] Anda Tang, Lingfeng Niu, Jianyu Miao, Peng Zhang. Training Compact DNNs with ℓ1/2 Regularization. Pattern Recognit.[J]. 2023, [3] Ruiyang Shi, Lingfeng Niu, Ruizhi Zhou. Sparse CapsNet with explicit regularizer. PATTERN RECOGNITION[J]. 2022, 124: [4] Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Latent neighborhood-based heterogeneous graph representation. NEURAL NETWORKS[J]. 2022, 154: 413-424, http://dx.doi.org/10.1016/j.neunet.2022.07.028.
[5] Xiaofei Zhou, Niu, Lingfeng, Zhu XingQuan, Liu, Ping, Jianlong tan, Li Guo. Knowledge Graph Embedding by Double Limit Scoring Loss. IEEE TKDE (CCF-A)[J]. 2022, Volume: 34(Issue: 12, 01 December 2022): 5825-5839, [6] Minglong Lei, Pei Quan, Rongrong Ma, Yong Shi, Lingfeng Niu. DigGCN: Learning Compact Graph Convolutional Networks via Diffusion Aggregation. IEEE Trans. Cybern.[J]. 2022, [7] Ruiyang Shi, Lingfeng Niu, Ruizhi Zhou. Sparse CapsNet with explicit regularizer. PATTERN RECOGNITION[J]. 2022, 124: [8] Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Latent neighborhood-based heterogeneous graph representation. NEURAL NETWORKS[J]. 2022, 154: 413-424, http://dx.doi.org/10.1016/j.neunet.2022.07.028.
[9] Xiaofei Zhou, Niu, Lingfeng, Zhu XingQuan, Liu, Ping, Jianlong tan, Li Guo. Knowledge Graph Embedding by Double Limit Scoring Loss. IEEE TKDE (CCF-A)[J]. 2022, Volume: 34(Issue: 12, 01 December 2022): 5825-5839, [10] Minglong Lei, Pei Quan, Rongrong Ma, Yong Shi, Lingfeng Niu. DigGCN: Learning Compact Graph Convolutional Networks via Diffusion Aggregation. IEEE Trans. Cybern.[J]. 2022, [11] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Document-level relation extraction via graph transformer networks and temporal convolutional networks. PATTERN RECOGNITION LETTERS[J]. 2021, 149: 150-156, http://dx.doi.org/10.1016/j.patrec.2021.06.012.
[12] Zhou, Ruizhi, Niu, Lingfeng, Yang, Hong. Unsupervised feature selection for attributed graphs. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 168: http://dx.doi.org/10.1016/j.eswa.2020.114402.
[13] Jianyu Miao, Yuan Ping, Zhensong Chen, XiaoBo Jin, Peijia Li, Lingfeng Niu. Unsupervised feature selection by non-convex regularized self-representation. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 173: [14] Zhou, Ruizhi, Zhang, Qin, Zhang, Peng, Niu, Lingfeng, Lin, Xiaodong. Anomaly detection in dynamic attributed networks. NEURAL COMPUTING & APPLICATIONS[J]. 2021, 33(6): 2125-2136, http://dx.doi.org/10.1007/s00521-020-05091-3.
[15] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Distant Supervision Relation Extraction via adaptive dependency-path and additional knowledge graph supervision. NEURAL NETWORKS[J]. 2021, 134: 42-53, http://dx.doi.org/10.1016/j.neunet.2020.10.012.
[16] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Document-level relation extraction via graph transformer networks and temporal convolutional networks. PATTERN RECOGNITION LETTERS[J]. 2021, 149: 150-156, http://dx.doi.org/10.1016/j.patrec.2021.06.012.
[17] Zhou, Ruizhi, Niu, Lingfeng, Yang, Hong. Unsupervised feature selection for attributed graphs. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 168: http://dx.doi.org/10.1016/j.eswa.2020.114402.
[18] Jianyu Miao, Yuan Ping, Zhensong Chen, XiaoBo Jin, Peijia Li, Lingfeng Niu. Unsupervised feature selection by non-convex regularized self-representation. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 173: [19] Zhou, Ruizhi, Zhang, Qin, Zhang, Peng, Niu, Lingfeng, Lin, Xiaodong. Anomaly detection in dynamic attributed networks. NEURAL COMPUTING & APPLICATIONS[J]. 2021, 33(6): 2125-2136, http://dx.doi.org/10.1007/s00521-020-05091-3.
[20] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Distant Supervision Relation Extraction via adaptive dependency-path and additional knowledge graph supervision. NEURAL NETWORKS[J]. 2021, 134: 42-53, http://dx.doi.org/10.1016/j.neunet.2020.10.012.
[5] Xiaofei Zhou, Niu, Lingfeng, Zhu XingQuan, Liu, Ping, Jianlong tan, Li Guo. Knowledge Graph Embedding by Double Limit Scoring Loss. IEEE TKDE (CCF-A)[J]. 2022, Volume: 34(Issue: 12, 01 December 2022): 5825-5839, [6] Minglong Lei, Pei Quan, Rongrong Ma, Yong Shi, Lingfeng Niu. DigGCN: Learning Compact Graph Convolutional Networks via Diffusion Aggregation. IEEE Trans. Cybern.[J]. 2022, [7] Ruiyang Shi, Lingfeng Niu, Ruizhi Zhou. Sparse CapsNet with explicit regularizer. PATTERN RECOGNITION[J]. 2022, 124: [8] Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Latent neighborhood-based heterogeneous graph representation. NEURAL NETWORKS[J]. 2022, 154: 413-424, http://dx.doi.org/10.1016/j.neunet.2022.07.028.
[9] Xiaofei Zhou, Niu, Lingfeng, Zhu XingQuan, Liu, Ping, Jianlong tan, Li Guo. Knowledge Graph Embedding by Double Limit Scoring Loss. IEEE TKDE (CCF-A)[J]. 2022, Volume: 34(Issue: 12, 01 December 2022): 5825-5839, [10] Minglong Lei, Pei Quan, Rongrong Ma, Yong Shi, Lingfeng Niu. DigGCN: Learning Compact Graph Convolutional Networks via Diffusion Aggregation. IEEE Trans. Cybern.[J]. 2022, [11] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Document-level relation extraction via graph transformer networks and temporal convolutional networks. PATTERN RECOGNITION LETTERS[J]. 2021, 149: 150-156, http://dx.doi.org/10.1016/j.patrec.2021.06.012.
[12] Zhou, Ruizhi, Niu, Lingfeng, Yang, Hong. Unsupervised feature selection for attributed graphs. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 168: http://dx.doi.org/10.1016/j.eswa.2020.114402.
[13] Jianyu Miao, Yuan Ping, Zhensong Chen, XiaoBo Jin, Peijia Li, Lingfeng Niu. Unsupervised feature selection by non-convex regularized self-representation. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 173: [14] Zhou, Ruizhi, Zhang, Qin, Zhang, Peng, Niu, Lingfeng, Lin, Xiaodong. Anomaly detection in dynamic attributed networks. NEURAL COMPUTING & APPLICATIONS[J]. 2021, 33(6): 2125-2136, http://dx.doi.org/10.1007/s00521-020-05091-3.
[15] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Distant Supervision Relation Extraction via adaptive dependency-path and additional knowledge graph supervision. NEURAL NETWORKS[J]. 2021, 134: 42-53, http://dx.doi.org/10.1016/j.neunet.2020.10.012.
[16] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Document-level relation extraction via graph transformer networks and temporal convolutional networks. PATTERN RECOGNITION LETTERS[J]. 2021, 149: 150-156, http://dx.doi.org/10.1016/j.patrec.2021.06.012.
[17] Zhou, Ruizhi, Niu, Lingfeng, Yang, Hong. Unsupervised feature selection for attributed graphs. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 168: http://dx.doi.org/10.1016/j.eswa.2020.114402.
[18] Jianyu Miao, Yuan Ping, Zhensong Chen, XiaoBo Jin, Peijia Li, Lingfeng Niu. Unsupervised feature selection by non-convex regularized self-representation. EXPERT SYSTEMS WITH APPLICATIONS[J]. 2021, 173: [19] Zhou, Ruizhi, Zhang, Qin, Zhang, Peng, Niu, Lingfeng, Lin, Xiaodong. Anomaly detection in dynamic attributed networks. NEURAL COMPUTING & APPLICATIONS[J]. 2021, 33(6): 2125-2136, http://dx.doi.org/10.1007/s00521-020-05091-3.
[20] Shi, Yong, Xiao, Yang, Quan, Pei, Lei, MingLong, Niu, Lingfeng. Distant Supervision Relation Extraction via adaptive dependency-path and additional knowledge graph supervision. NEURAL NETWORKS[J]. 2021, 134: 42-53, http://dx.doi.org/10.1016/j.neunet.2020.10.012.
科研活动
科研项目
( 1 ) 基于非线性优化的数据挖掘方法, 主持, 市地级, 2011-05--2013-04
( 2 ) 最优化数据挖掘的商 业智能方法以及在金 融与银行管理中的应用(71110107026), 参与, 国家级, 2012-01--2016-12
( 3 ) 求解非光滑、非凸正则极小化问题的光滑化信赖域方法, 主持, 国家级, 2013-01--2015-12
( 4 ) 面向信息技术的优化理论和方法子课题, 主持, 国家级, 2014-01--2018-12
( 5 ) 非Lipschitz优化的高效光滑化信赖域方法及应用, 主持, 国家级, 2017-01--2020-12
( 6 ) 一阶光滑化信赖域方法及其在数据挖掘中的应用, 主持, 市地级, 2015-09--2017-08
( 2 ) 最优化数据挖掘的商 业智能方法以及在金 融与银行管理中的应用(71110107026), 参与, 国家级, 2012-01--2016-12
( 3 ) 求解非光滑、非凸正则极小化问题的光滑化信赖域方法, 主持, 国家级, 2013-01--2015-12
( 4 ) 面向信息技术的优化理论和方法子课题, 主持, 国家级, 2014-01--2018-12
( 5 ) 非Lipschitz优化的高效光滑化信赖域方法及应用, 主持, 国家级, 2017-01--2020-12
( 6 ) 一阶光滑化信赖域方法及其在数据挖掘中的应用, 主持, 市地级, 2015-09--2017-08
参与会议
(1)MSSVM: A Modular Solver for Support Vector Machines Lingfeng Niu and Yong Shi 2011-08-22
(2)A decomposition alternating direction method for matrix completion Lingfeng Niu and Ya-xiang Yuan 2011-07-18
(3)Second-order Mining for Active Collaborative Filtering Lingfeng Niu, Jianmin Wu, Yong Shi 2011-06-01
(4)Semi-supervised PLSA for Document Clustering Lingfeng Niu and Yong Shi 2010-12-14
(5)Using Projection Gradient Method to Train Linear Support Vector Machines Lingfeng Niu and Yong Shi 2010-08-31
(6)Training the max-margin sequence model with relaxed slack variables Lingfeng Niu and Jianmin Wu 2010-07-06
(7)A new training method for sequence data Lingfeng Niu,Yong Shi 2010-05-31
(8)A New Decomposition Algorithm for Training Bound-Constrained Support Vector Machines 第四届(2009)中国管理学年会 牛凌峰,石勇 2009-11-14
(9)A New Decomposition Algorithm for Training Bound-Constrained Support Vector Machines 牛凌峰 2009-05-27
(10)Parallel algorithm for proximal support vector machine 中国运筹学会第九届学术交流会 Lingfeng Niu and Jianmin Wu 2008-10-18
(11)Parallel Algorithm for Proximal Support Vector Machine 牛凌峰 2008-10-17
(2)A decomposition alternating direction method for matrix completion Lingfeng Niu and Ya-xiang Yuan 2011-07-18
(3)Second-order Mining for Active Collaborative Filtering Lingfeng Niu, Jianmin Wu, Yong Shi 2011-06-01
(4)Semi-supervised PLSA for Document Clustering Lingfeng Niu and Yong Shi 2010-12-14
(5)Using Projection Gradient Method to Train Linear Support Vector Machines Lingfeng Niu and Yong Shi 2010-08-31
(6)Training the max-margin sequence model with relaxed slack variables Lingfeng Niu and Jianmin Wu 2010-07-06
(7)A new training method for sequence data Lingfeng Niu,Yong Shi 2010-05-31
(8)A New Decomposition Algorithm for Training Bound-Constrained Support Vector Machines 第四届(2009)中国管理学年会 牛凌峰,石勇 2009-11-14
(9)A New Decomposition Algorithm for Training Bound-Constrained Support Vector Machines 牛凌峰 2009-05-27
(10)Parallel algorithm for proximal support vector machine 中国运筹学会第九届学术交流会 Lingfeng Niu and Jianmin Wu 2008-10-18
(11)Parallel Algorithm for Proximal Support Vector Machine 牛凌峰 2008-10-17
指导学生
已指导学生
周睿智 硕士研究生 070105-运筹学与控制论
沈欣 硕士研究生 070105-运筹学与控制论
袁昊 硕士研究生 070105-运筹学与控制论
马荣榕 硕士研究生 070105-运筹学与控制论
李岩 硕士研究生 125100-工商管理
周睿智 博士研究生 070105-运筹学与控制论
汪华东 博士研究生 070105-运筹学与控制论
苗建雨 博士研究生 070105-运筹学与控制论
现指导学生
唐岸达 硕士研究生 070105-运筹学与控制论
师瑞阳 硕士研究生 070105-运筹学与控制论
林郁晗 硕士研究生 070105-运筹学与控制论
苏浩 硕士研究生 125100-工商管理
暴昱明 硕士研究生 125100-工商管理