田思聪  男  博导  中国科学院长春光学精密机械与物理研究所
电子邮件: tiansicong@ciomp.ac.cn
通信地址: 东南湖大路3888号
邮政编码: 130033

招生信息

   
招生专业
080903-微电子学与固体电子学
070205-凝聚态物理
招生方向
垂直腔面发射激光器
光子晶体激光器
高亮度半导体激光器

教育背景

2016-12--2017-12   University of Arkansas   访问学者
2007-07--2012-06   吉林大学   博士
2003-09--2007-06   吉林大学   学士

工作经历

   
工作简历
2021-11~现在, 中国科学院长春光学精密机械与物理研究所, 研究员
2014-11~2021-10,中国科学院长春光学精密机械与物理研究所, 副研究员
2012-07~2014-10,中国科学院长春光学精密机械与物理研究所 , 助理研究员

专利与奖励

   
奖励信息
(1) 高功率高亮度半导体激光芯片及系统关键技术, 一等奖, 省级, 2020
(2) 高功率、极低发散角圆形光束半导体激光器, 二等奖, 省级, 2017
(3) 高功率低发散角圆形光束半导体边发射激光器, , 其他, 2015
专利成果
[1] 冈特·拉里斯, 田思聪, 迪特尔·宾贝格. 辐射发射器及其制备方法. CN: CN113140962A, 2021-07-20.

[2] 汪丽杰, 佟存柱, 舒世立, 田思聪, 张新, 王立军. 一种红外热辐射光源及红外传感器. CN: CN110400862B, 2021-04-02.

[3] 佟存柱, 佟海霞, 汪丽杰, 王延靖, 陆寰宇, 田思聪, 王立军. 一种垂直腔面发射激光器及其制作方法. CN: CN112186503A, 2021-01-05.

[4] 佟存柱, 王子烨, 陆寰宇, 田思聪, 汪丽杰, 舒世立, 张新, 王立军. 一种面发射激光器及一种面发射激光器阵列. CN: CN109861078B, 2021-01-05.

[5] 张新, 佟存柱, 汪丽杰, 田思聪, 陆寰宇, 王延靖. 一种固体激光器. CN: CN112152055A, 2020-12-29.

[6] 佟存柱, 赵宇飞, 孙方圆, 舒世立, 张新, 汪丽杰, 田思聪, 王立军. 一种激光合束系统. CN: CN109212767B, 2020-11-06.

[7] Tong, Cunzhu, Zhao, Yufei, Sun, Fangyuan, Shu, Shili, Wang, Lijie, Zhang, Xin, Tian, Sicong, Wang, Lijun. Laser beam combining system. CN: US10768434(B2), 2020-09-08.

[8] 佟存柱, 孙方圆, 舒世立, 汪丽杰, 田思聪, 侯冠宇, 赵宇飞, 王立军. 一种半导体激光器合束装置. CN: CN211351245U, 2020-08-25.

[9] TONG, Cunzhu, XU, Jiaxin, WANG, Lijie, SHU, Shili, TIAN, Sicong, ZHANG, Xin, WANG, Lijun. SEMICONDUCTOR LASER AND FABRICATION METHOD THEREOF. CN: US20200203924(A1), 2020-06-25.

[10] 佟存柱, 宿家鑫, 汪丽杰, 田思聪, 舒世立, 张新, 王立军. 一种半导体激光器及其制备方法. CN: CN110224296A, 2019-09-10.

[11] 佟存柱, 孙方圆, 舒世立, 汪丽杰, 田思聪, 侯冠宇, 赵宇飞, 王立军. 一种半导体激光器外腔相干合束系统. CN: CN107404061B, 2019-06-11.

[12] 佟存柱, 孙方圆, 舒世立, 汪丽杰, 田思聪, 侯冠宇, 赵宇飞, 王立军. 一种半导体激光器光谱合束系统. CN: CN107453206B, 2019-06-11.

[13] 佟存柱, 宿家鑫, 汪丽杰, 舒世立, 田思聪, 张新, 王立军. 一种半导体激光器及其制备方法. CN: CN109449756A, 2019-03-08.

[14] 佟存柱, 王涛, 汪丽杰, 田思聪, 舒世立, 张建, 王立军. 一种半导体激光器及其制作方法. 中国: CN105529615B, 2018.10.19.

[15] 舒世立, 佟存柱, 吴昊, 汪丽杰, 田思聪, 王立军. 采用热管散热系统散热的小体积大功率半导体激光器. 中国: CN105552711B, 2018-10-26.

[16] 佟存柱, 孙方圆, 舒世立, 汪丽杰, 田思聪, 侯冠宇, 赵宇飞, 王立军. 一种半导体激光器合束装置. 中国: CN108551078A, 2018-09-18.

[17] 汪丽杰, 佟存柱, 田思聪, 舒世立, 吴昊, 戎佳敏, 王立军. 基于模式增益损耗调控的高亮度半导体激光器. 中国: CN105680319B, 2018-07-27.

[18] 汪丽杰, 佟存柱, 田思聪, 舒世立, 吴昊, 王立军. 高功率共面电极泄露波激光器. 中国: CN105048283B, 2018-06-26.

[19] 汪丽杰, 佟存柱, 田思聪, 舒世立, 吴昊, 王立军. 单片集成电泵浦布拉格反射波导太赫兹激光器. 中国: CN105048282B, 2018-06-22.

[20] 佟存柱, 孙方圆, 赵宇飞, 舒世立, 汪丽杰, 侯冠宇, 田思聪, 王立军. 一种半导体激光器合束装置及合束方法. 中国: CN107946898A, 2018-04-20.

[21] 舒世立, 佟存柱, 汪丽杰, 田思聪, 张新, 王立军. 一种半导体碟片激光器及其制备方法. 中国: CN107887789A, 2018-04-06.

[22] 佟存住, 王延靖, 舒世立, 汪丽杰, 张新, 田思聪, 王立军. 半导体光放大器及其制作方法. 中国: CN107681465A, 2018-02-09.

[23] 佟存柱, 卢泽丰, 舒世立, 吴昊, 田思聪, 汪丽杰, 宁永强, 王立军. 一种高效侧向导热的量子级联激光器结构及其制备方法. 中国: CN104577706B, 2017-10-03.

[24] 舒世立, 佟存柱, 吴昊, 汪丽杰, 田思聪, 王立军. 陶瓷颗粒梯度增强Cu热沉及其制备方法. 中国: CN105018779A, 2015-11-04.

[25] 舒世立, 佟存柱, 田思聪, 汪丽杰, 宁永强, 王立军. 热膨胀系数可调的Cu热沉及其制备方法. 中国: CN104498766A, 2015-04-08.

[26] 舒世立, 佟存柱, 汪丽杰, 田思聪, 宁永强, 王立军. 含有双相陶瓷颗粒的Al热沉及其制备方法. 中国: CN104475732A, 2015-04-01.

[27] 佟存柱, 王涛, 汪丽杰, 田思聪, 邢恩博, 戎佳敏, 卢泽丰, 王立军. 基于光子晶体Y波导的片上集成合束激光器及其制作方法. 中国: CN104466674A, 2015-03-25.

[28] 佟存柱, 戎佳敏, 汪丽杰, 邢恩博, 田思聪, 刘云, 王立军. 布拉格反射波导GaSb基半导体激光器. 中国: CN104409965A, 2015-03-11.

[29] 佟存柱, 田思聪, 汪丽杰, 邢恩博, 王立军. 光子晶体纳腔量子环单光子发射器件及其制备方法. 中国: CN103346476A, 2013-10-09.

[30] 吴昊, 佟存柱, 彭航宇, 张俊, 汪丽杰, 田思聪, 王立军. 一种基于双光栅的波长可调谐激光相干合束系统. 中国: CN103197422A, 2013-07-10.

出版信息

   
发表论文
[1] 张新, 佟存柱, 蔡凯迪, 王延靖, 汪丽杰, 田思聪. 2.3W双向抽运3.5μm光纤激光器. 中国激光[J]. 2022, 49(18): 1-6, http://lib.cqvip.com/Qikan/Article/Detail?id=7108287930.
[2] 徐汉阳, 田思聪, 韩赛一, 潘绍驰, MANSOOR, Ahamed, 佟存柱, 王立军, BIMBERG, Dieter. 53 Gbit/s高速单模940 nm垂直腔面发射激光器. 发光学报[J]. 2022, 43(7): 1114-1120, http://lib.cqvip.com/Qikan/Article/Detail?id=7107720758.
[3] 田思聪, 佟存柱, 王立军, Bimberg, Dieter. 长春光机所高速垂直腔面发射激光器研究进展. 中国光学(中英文)[J]. 2022, 15(5): 946-953, http://lib.cqvip.com/Qikan/Article/Detail?id=7108076781.
[4] 李儒颂, 田思聪. 狄拉克光子晶体在面发射激光器中的应用. 光电子激光[J]. 2022, 33(3): 230-240, http://lib.cqvip.com/Qikan/Article/Detail?id=7107361715.
[5] 田思聪. Optimization of VCSEL photon lifetimes for minimum energy consumption for varying bit rates. Optics Express. 2020, [6] 杨卓凯, 田思聪, LARISCH Gunter, 贾晓卫, 佟存柱, 王立军, BIMBERG Dieter. 基于PAM4调制的高速垂直腔面发射激光器研究进展. 发光学报. 2020, 399-413, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=FGXB202004008&v=MDIyMjZHNEhOSE1xNDlGYklSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWVaK1J2Rml2bVViL0lJeXJUYkw=.
[7] 佟海霞, 佟存柱, 王子烨, 陆寰宇, 汪丽杰, 田思聪, 王立军. 850 nm高速垂直腔面发射激光器技术研究进展(特邀). 红外与激光工程[J]. 2020, 49(12): 22-29, http://lib.cqvip.com/Qikan/Article/Detail?id=7103953800.
[8] Wang, Yanjing, Zhang, Xin, Tong, Cunzhu, Wang, Lijie, Shu, Shili, Tian, Sicong, Wang, Lijun. High power femtosecond semiconductor lasers based on saw-toothed master-oscillator power-amplifier system with compressed ASE. OPTICS EXPRESS[J]. 2020, 28(5): 7108-7115, https://www.webofscience.com/wos/woscc/full-record/WOS:000518435600096.
[9] 杨卓凯, 田思聪, LARISCH, Gunter, 贾晓卫, 佟存柱, 王立军, BIMBERG, Dieter. 基于PAM4制的高速垂直腔面发射激光器研究进展. 发光学报[J]. 2020, 41(4): 399-413, http://lib.cqvip.com/Qikan/Article/Detail?id=7101477017.
[10] 陆寰宇, 佟存柱, 王子烨, 田思聪, 汪丽杰, 佟海霞, 李儒颂, 王立军. 带边模式光子晶体面发射半导体激光器研究进展. 中国激光[J]. 2020, 47(7): 187-206, http://lib.cqvip.com/Qikan/Article/Detail?id=7102611264.
[11] 田思聪. 基于PAM4 制的高速垂直腔面发射激光器研究进展. 发光学报. 2020, [12] Larisch, Gunter, Tian, Sicong, Bimberg, Dieter. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates. OPTICS EXPRESS[J]. 2020, 28(13): 18931-18937, https://www.webofscience.com/wos/woscc/full-record/WOS:000545130800028.
[13] Tian, SiCong, Wan, RenGang, Wang, LiJie, Shu, ShiLi, Lu, HuanYu, Zhang, Xin, Tong, CunZhu, Xiao, Min, Wang, LiJun. Parity-time symmetry in coherent asymmetric double quantum wells. SCIENTIFICREPORTS[J]. 2019, 9(1): https://doaj.org/article/082727c277894675a966a41bac9ed01f.
[14] GYHou, SLShu, JFeng, APopp, BSchmidt, HYLu. High Power (27 W) Semiconductor Disk Laser Based on Pre-Metalized Diamond Heat-Spreader. IEEE PHOTONICS JOURNAL[J]. 2019, 11(2): [15] Tian, SiCong, Lu, HuanYu, Zhang, Hang, Wang, LiJie, Shu, ShiLi, Zhang, Xin, Hou, GuanYu, Wang, ZiYe, Tong, CunZhu, Wang, LiJun. Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots. NANOMATERIALS[J]. 2019, 9(3): https://doaj.org/article/50c3ba81f1404311a36df2d54d3d4aad.
[16] GuanYu Hou, ShiLi Shu, Jian Feng, Andreas Popp, Berthold Schmidt, HuanYu Lu, LiJie Wang, SiCong Tian, CunZhu Tong, LiJun Wang. High Power (>27 W) Semiconductor Disk Laser Based on Pre-Metalized Diamond Heat-Spreader. IEEE PHOTONICS JOURNAL[J]. 2019, 11(2): 1-8, https://doaj.org/article/f15692f2a5c04a249d7d3e5848ebc47f.
[17] Wang, Lijie, Tong, Cunzhu, Shu, Shili, Tian, Sicong, Sun, Fangyuan, Zhao, Yufei, Lu, Huanyu, Zhang, Xin, Hou, Guanyu, Wang, Lijun. Loss tailoring of high-power broad-area diode lasers. OPTICS LETTERS[J]. 2019, 44(14): 3562-3565, https://www.webofscience.com/wos/woscc/full-record/WOS:000475678500038.
[18] Lu, HuanYu, Tian, SiCong, Tong, CunZhu, Wang, LiJie, Rong, JiaMin, Liu, ChongYang, Wang, Hong, Shu, ShiLi, Wang, LiJun. Extracting more light for vertical emission: high power continuous wave operation of 1.3-mu m quantum-dot photonic-crystal surface-emitting laser based on a flat band. LIGHT-SCIENCE & APPLICATIONS[J]. 2019, 8: https://www.webofscience.com/wos/woscc/full-record/WOS:000497993500001.
[19] Sun, Fangyuan, Zhao, Yufei, Shu, Shili, Hou, Guanyu, Lu, Huanyu, Zhang, Xin, Wang, Lijie, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. High beam quality broad-area diode lasers by spectral beam combining with double filters. CHINESE OPTICS LETTERS[J]. 2019, 17(1): http://lib.cqvip.com/Qikan/Article/Detail?id=71887566504849574849484950.
[20] FYSun, SLShu, GYHou, LJWang, JZhang, HYPeng. Efficiency and Threshold Characteristics of Spectrally Beam Combined High-Power Diode Lasers. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2019, 55(1): 7-, https://www.webofscience.com/wos/woscc/full-record/WOS:000456929600001.
[21] Hou, Guanyu, Wang, Lijie, Feng, Jian, Popp, Andreas, Schmidt, Berthold, Lu, Huanyu, Shu, Shili, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. Beam Control in an Intracavity Frequency-Doubling Semiconductor Disk Laser. APPLIED SCIENCES-BASEL[J]. 2019, 9(8): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000467316400069.
[22] Tian, SiCong, Wan, RenGang, Wang, LiJie, Shu, ShiLi, Lu, HunaYu, Zhang, Xin, Tong, CunZhu, Feng, JingLiang, Xiao, Min, Wang, LiJun. Asymmetric light diffraction of two-dimensional electromagnetically induced grating with PT symmetry in asymmetric double quantum wells. OPTICS EXPRESS[J]. 2018, 26(25): 32918-32930, https://www.webofscience.com/wos/woscc/full-record/WOS:000452612200048.
[23] Sun, Fangyuan, Shu, Shili, Zhao, Yufei, Hou, Guanyu, Lu, Huanyu, Zhang, Xin, Wang, Lijie, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback. OPTICSEXPRESS[J]. 2018, 26(17): 21813-21818, https://www.webofscience.com/wos/woscc/full-record/WOS:000442136200038.
[24] Sun, Fangyuan, Wang, Lijie, Zhao, Yufei, Hou, Guanyu, Shu, Shili, Zhang, Jun, Peng, Hangyu, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers. JAPANESE JOURNAL OF APPLIED PHYSICS[J]. 2018, 57(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000454304900001.
[25] Zhao, Yufei, Sun, Fangyuan, Tong, Cunzhu, Shu, Shili, Hou, Guanyu, Lu, Huanyu, Zhang, Xin, Wang, Lijie, Tian, Sicong, Wang, Lijun. Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity. OPTICS EXPRESS[J]. 2018, 26(11): 14058-14065, https://www.webofscience.com/wos/woscc/full-record/WOS:000433333700032.
[26] Shu Shili, Hou Guanyu, Feng Jian, Wang Lijie, Tian Sicong, Tong Cunzhu, Wang Lijun. Progress of optically pumped GaSb based semiconductor disk laser. 光电进展(英文)[J]. 2018, 1(2): 9-17, http://lib.cqvip.com/Qikan/Article/Detail?id=675961223.
[27] Shu, Shili, Hou, Guanyu, Feng, Jian, Wang, Lijie, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. Progress of optically pumped GaSb based semiconductor disk laser. OPTO-ELECTRONIC ADVANCES[J]. 2018, 1(2): http://dx.doi.org/10.29026/oea.2018.170003.
[28] Lu, Zefeng, Wang, Lijie, Zhang, Yu, Shu, Shili, Tian, Sicong, Tong, Cunzhu, Hou, Guanyu, Chai, Xiaoli, Xu, Yingqiang, Ni, Haiqiao, Niu, Zhichuan, Wang, Lijun. High-power GaSb-based microstripe broad-area lasers. APPLIED PHYSICS EXPRESS[J]. 2018, 11(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000425960100001.
[29] Wang, Lijie, Li, Zhen, Tong, Cunzhu, Shu, Shili, Tian, Sicong, Zhang, Jun, Zhang, Xin, Wang, Lijun. Near-diffraction-limited Bragg reflection waveguide lasers. APPLIED OPTICS[J]. 2018, 57(34): F15-F21, [30] Lu, Zefeng, Wang, Lijie, Zhao, Zhide, Shu, Shili, Hou, Guanyu, Lu, Huanyu, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. Broad-area laser diodes with on-chip combined angled cavity. CHINESE OPTICS LETTERS[J]. 2017, 15(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000407438600016.
[31] Tian, SiCong, Zhang, XiaoJun, Wan, RenGang, Wang, LiJie, Shu, ShiLi, Wang, Tao, Lu, ZeFeng, Sun, FangYuan, Tong, CunZhu. Control of transient gain absorption via tunneling and incoherent pumping in triple quantum dots. LASER PHYSICS[J]. 2017, 27(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000390774600001.
[32] Liu, Xiaoyi, Gao, Jinsong, Yang, Haigui, Wang, Xiaoyi, Tian, Sicong, Guo, Chengli. Hybrid Plasmonic Modes in Multilayer Trench Grating Structures. ADVANCED OPTICAL MATERIALS[J]. 2017, 5(22): https://www.webofscience.com/wos/woscc/full-record/WOS:000415344900005.
[33] Xing EnBo, Rong JiaMin, Tong CunZhu, Tian SiCong, Wang LiJie, Shu ShiLi, Wang LiJun. Influence of microcavity effect on modulation response in 1.3 mu m quantum dot photonic crystal nanocavity lasers. JOURNAL OF INFRARED AND MILLIMETER WAVES[J]. 2017, 36(2): 160-166, https://www.webofscience.com/wos/woscc/full-record/WOS:000400884100007.
[34] Shu, Shili, Hou, Guanyu, Wang, Lijie, Tian, Sicong, Vassiliev, Leonid L, Tong, Cunzhu. Heat dissipation in high-power semiconductor lasers with heat pipe cooling system. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY[J]. 2017, 31(6): 2607-2612, https://www.webofscience.com/wos/woscc/full-record/WOS:000404236400002.
[35] Wang Lijun, Xing Enbo, Rong Jiamin, Zhang Yu, Tong Cunzhu, Tian Sicong, Wang Lijie, Shu Shili, Lu Zefeng, Niu Zhichuan. Watt - class low divergence 2 μm GaSb based broad-area quantum well lasers. JOURNAL OF INFRARED AND MILLIMETER WAVES[J]. 2017, 36(3): 280-282,288, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6017576&detailType=1.
[36] Xing EnBo, Rong JiaMin, Zhang Yu, Tong CunZhu, Tian SiCong, Wang LiJie, Shu ShiLi, Lu ZeFeng, Niu ZhiChuan, Wang LiJun. Watt-class low divergence 2 mu m GaSb based broad-area quantum well lasers. JOURNAL OF INFRARED AND MILLIMETER WAVES[J]. 2017, 36(3): 280-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000406085000006.
[37] 邢恩博, 戎佳敏, 佟存柱, 田思聪, 汪丽杰, 舒适立, 王立军. 微腔效应对于1.3μm量子点光子晶体纳腔激光器调制响应的影响. 红外与毫米波学报[J]. 2017, 36(2): 160-166, http://lib.cqvip.com/Qikan/Article/Detail?id=671931031.
[38] 董立超, 田思聪, 王涛, 卢泽丰, 汪丽杰, 舒世立, 秦莉, 佟存柱, 王立军. 半导体超晶格声子激光器的研究进展. 中国光学[J]. 2017, 10(4): 415-425, http://lib.cqvip.com/Qikan/Article/Detail?id=672845307.
[39] 田思聪. Watt-class low divergence 2 um GaSb based broad-area quantum well lasers. J. Infrared Millim. Waves. 2017, [40] 邢恩博, 戎佳敏, 张宇, 佟存柱, 田思聪, 汪丽杰, 舒适立, 卢泽丰, 牛智川, 王立军. 2微米波段低发散角瓦级GaSb基宽区量子阱激光器(英文). 红外与毫米波学报[J]. 2017, 36(3): 280-282, http://lib.cqvip.com/Qikan/Article/Detail?id=672553526.
[41] Wang, Tao, Wang, Lijie, Shu, Shili, Tian, Sicong, Lu, Zefeng, Hou, Guanyu, Lu, Huanyu, Tong, Cunzhu, Wang, Lijun. Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure. APPLIED PHYSICS EXPRESS[J]. 2017, 10(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000401070500002.
[42] 田思聪. Progress of semiconductor superlattice phonon laser. Chinese Optics. 2017, [43] 邢恩博, 戎佳敏, 佟存柱, 田思聪, 汪丽杰, 舒适立, 王立军. 微腔效应对于1.3μm量子点光子晶体纳腔激光器调制响应的影响(英文). 红外与毫米波学报[J]. 2017, 160-166, http://ir.ciomp.ac.cn/handle/181722/58540.
[44] Wang, Tao, Wang, Lijie, Shu, Shili, Tian, Sicong, Zhao, Zhide, Tong, Cunzhu, Wang, Lijun. Suppression of far-field blooming in high-power broad-area diode lasers by optimizing gain distribution. CHINESE OPTICS LETTERS[J]. 2017, 15(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000405355000014.
[45] Enbo Xing, Cunzhu Tong, Jiamin Rong, Shili Shu, Hao Wu, Lijie Wang, Sicong Tian, Lijun Wang. Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers. OPTICS AND LASER TECHNOLOGY. 2016, 82: 10-16, http://dx.doi.org/10.1016/j.optlastec.2016.01.038.
[46] Xing, Enbo, Tong, Cunzhu, Rong, Jiamin, Shu, Shili, Wu, Hao, Wang, Lijie, Tian, Sicong, Wang, Lijun. Modulation of carrier dynamics and threshold characteristics in 1.3-mu m quantum dot photonic crystal nanocavity lasers. OPTICSANDLASERTECHNOLOGY[J]. 2016, 82: 10-16, https://www.webofscience.com/wos/woscc/full-record/WOS:000375507400002.
[47] Rong, Jiamin, Xing, Enbo, Wang, Lijie, Shu, Shili, Tian, Sicong, Tong, Cunzhu, Wang, Lijun. Control of lateral divergence in high-power, broad-area photonic crystal lasers. APPLIED PHYSICS EXPRESS[J]. 2016, 9(7): http://ir.ciomp.ac.cn/handle/181722/57167.
[48] Rong, Jiamin, Xing, Enbo, Zhang, Yu, Wang, Lijie, Shu, Shili, Tian, Sicong, Tong, Cunzhu, Chai, Xiaoli, Xu, Yingqiang, Ni, Haiqiao, Niu, Zhichuan, Wang, Lijun. Low lateral divergence 2 mu m InGaSb/AlGaAsSb broad-area quantum well lasers. OPTICS EXPRESS[J]. 2016, 24(7): 7246-7252, http://ir.ciomp.ac.cn/handle/181722/57168.
[49] Tian, SiCong, Xing, EnBo, Wan, RenGang, Wang, ChunLiang, Wang, LiJie, Shu, ShiLi, Tong, CunZhu, Wang, LiJun. Control of coherence transfer via tunneling in quadruple and multiple quantum dots. LASER PHYSICS LETTERS[J]. 2016, 13(12): http://ir.ciomp.ac.cn/handle/181722/57210.
[50] Tian, SiCong, Wan, RenGang, Wang, ChunLiang, Shu, ShiLi, Wang, LiJie, Tong, ChunZhu. Creation and Transfer of Coherence via Technique of Stimulated Raman Adiabatic Passage in Triple Quantum Dots. NANOSCALE RESEARCH LETTERS[J]. 2016, 11(1): http://ir.ciomp.ac.cn/handle/181722/57208.
[51] Wang, Tao, Tong, Cunzhu, Wang, Lijie, Zeng, Yugang, Tian, Sicong, Shu, Shili, Zhang, Jian, Wang, Lijun. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation. APPLIED PHYSICS EXPRESS[J]. 2016, 9(11): http://ir.ciomp.ac.cn/handle/181722/57244.
[52] Tian, SiCong, Zhang, XiaoJun, Wan, RenGang, Zhao, Shuai, Wu, Hao, Shu, ShiLi, Wang, LiJie, Tong, CunZhu. Transient gain-absorption of the probe field in triple quantum dots coupled by double tunneling. OPTICS COMMUNICATIONS[J]. 2016, 368: 129-133, http://dx.doi.org/10.1016/j.optcom.2016.02.010.
[53] Tian, SiCong, Wan, RenGang, Wang, LiJie, Shu, ShiLi, Tong, CunZhu, Wang, LiJun. Tunneling-assisted coherent population transfer and creation of coherent superposition states in triple quantum dots. LASERPHYSICSLETTERS[J]. 2016, 13(12): http://ir.ciomp.ac.cn/handle/181722/57209.
[54] Jiamin Rong, Enbo Xing, Yu Zhang, Lijie Wang, Shili Shu, Sicong Tian, Cunzhu Tong, Xiaoli Chai, Yingqiang Xu, Haiqiao Ni, Zhichuan Niu, Lijun Wang. Low lateral divergence 2 μm InGaSb/ AlGaAsSb broad-area quantum well lasers. OPTICS EXPRESS[J]. 2016, 24(7): 7246-7252, http://ir.semi.ac.cn/handle/172111/27821.
[55] Tian, SiCong, Wan, RenGang, Xing, EnBo, Rong, JiaMin, Wu, Hao, Wang, LiJie, Shu, ShiLi, Tong, CunZhu, Ning, YongQiang. Tunneling induced transparency and giant Kerr nonlinearity in multiple quantum dot molecules. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES[J]. 2015, 69: 349-353, http://ir.ciomp.ac.cn/handle/181722/55435.
[56] Tian, SiCong, Wan, RenGang, Tong, CunZhu, Zhang, JinLong, Shan, XiaoNan, Fu, XiHong, Zeng, YuGang, Qin, Li, Ning, YongQiang. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules. AIP ADVANCES[J]. 2015, 5(6): http://ir.ciomp.ac.cn/handle/181722/55429.
[57] Tian, SiCong, Wan, RenGang, Shan, XiaoNan, Tong, CunZhu, Qin, Li, Ning, YongQiang. Controllable cavity linewidth narrowing via spontaneously generated coherence in a four level atomic system. OPTICS COMMUNICATIONS[J]. 2015, 356: 155-160, http://dx.doi.org/10.1016/j.optcom.2015.07.068.
[58] 佟存柱, 汪丽杰, 田思聪, 吴昊, 舒世立, 王立军. 布拉格反射波导半导体激光器的研究. 中国光学[J]. 2015, 8(3): 480-498, http://lib.cqvip.com/Qikan/Article/Detail?id=665240730.
[59] Tian, SiCong, Wan, RenGang, Li, LianHe, Tong, CunZhu, Ning, YongQiang. Cavity linewidth narrowing by tunneling induced double dark resonances in triple quantum dot molecules. OPTICS COMMUNICATIONS[J]. 2015, 334(334): 94-100, http://dx.doi.org/10.1016/j.optcom.2014.08.011.
[60] Tian, SiCong, Wan, RenGang, Tong, CunZhu, Fu, XiHong, Cao, JunSheng, Ning, YongQiang. Giant Kerr nonlinearity via tunneling induced double dark resonances in triangular quantum dot molecules. LASER PHYSICS LETTERS[J]. 2015, 12(12): http://ir.ciomp.ac.cn/handle/181722/55433.
[61] 田思聪. Study on Bragg reflection waveguide diode laser. Chinese Optics. 2015, [62] Tian, SiCong, Wan, RenGang, Tong, CunZhu, Ning, YongQiang. Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots. AIP ADVANCES[J]. 2015, 5(2): http://ir.ciomp.ac.cn/handle/181722/55432.
[63] Wang, Lijie, Tong, Cunzhu, Tian, Sicong, Shu, Shili, Zeng, Yugang, Rong, Jiamin, Wu, Hao, Xing, Enbo, Ning, Yongqiang, Wang, Lijun. High-Power Ultralow Divergence Edge-Emitting Diode Laser With Circular Beam. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2015, 21(6): http://ir.ciomp.ac.cn/handle/181722/55458.
[64] Tian, SiCong, Wan, RenGang, Xing, EnBo, Tong, CunZhu, Ning, YongQiang. Tunneling control of cavity linewidth narrowing via quantum interference in triangular quantum dot molecules. JOURNAL OF MODERN OPTICS[J]. 2014, 61(18): 1479-1485, http://www.irgrid.ac.cn/handle/1471x/950964.
[65] Tian, SiCong, Wan, RenGang, Tong, CunZhu, Ning, YongQiang, Qin, Li, Liu, Yun. Giant Kerr nonlinearity induced by tunneling in triple quantum dot molecules. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2014, 31(7): 1436-1442, http://www.irgrid.ac.cn/handle/1471x/950938.
[66] Tian SiCong, Tong CunZhu, Wan RenGang, Ning YongQiang, Qin Li, Liu Yun, Wang LiJun, Zhang Hang, Wang ZengBin, Gao JinYue. Phase control of light amplification in steady and transient processes in an inverted-Y atomic system with spontaneously generated coherence. CHINESE PHYSICS B[J]. 2014, 23(4): http://www.irgrid.ac.cn/handle/1471x/950950.
[67] Tian, SiCong, Wan, RenGang, Tong, CunZhu, Ning, YongQiang, Qin, Li, Liu, Yun. Tunneling induced dark states and the controllable resonance fluorescence spectrum in quantum dot molecules. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS[J]. 2014, 47(15): http://www.irgrid.ac.cn/handle/1471x/950936.
[68] Tian, SiCong, Tong, CunZhu, Wang, ChunLiang, Wang, LiJie, Wu, Hao, Xing, EnBo, Ning, YongQiang, Wang, LiJun. Spectral line narrowing via spontaneously generated coherence in quantum dot molecules. OPTICS COMMUNICATIONS[J]. 2014, 312(312): 296-301, http://dx.doi.org/10.1016/j.optcom.2013.09.059.
[69] Tian, SiCong, Tong, CunZhu, Wang, ChunLiang, Ning, YongQiang. Effects of spontaneously generated coherence on resonance fluorescence from triple quantum dot molecules. JOURNAL OF LUMINESCENCE[J]. 2014, 153(153): 169-176, http://dx.doi.org/10.1016/j.jlumin.2014.03.034.
[70] Tian, SiCong, Wan, RenGang, Tong, CunZhu, Ning, YongQiang. Controlling optical bistability via interacting double dark resonances in linear quantum dot molecules. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2014, 31(11): 2681-2688, http://www.irgrid.ac.cn/handle/1471x/950930.
[71] 汪丽杰, 佟存柱, 田思聪, 曾玉刚, 吴昊, 秦莉, 王立军. 非对称布拉格反射波导半导体激光器的特性研究. 激光与光电子学进展[J]. 2013, 50(9): 091401-1, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=4951542&detailType=1.
[72] 田思聪. High Brightness Bragg Reflection Waveguide Laser. Chinese Journal of Luminescence. 2013, [73] Wang, Lijie, Tong, Cunzhu, Zeng, Yugang, Yang, Ye, Peng, Hangyu, Tian, Sicong, Wu, Hao, Wang, Lijun. Bragg reflection waveguide twin-beam lasers. LASER PHYSICS[J]. 2013, 23(10): 105802-, http://download.archive.nstl.gov.cn:80/download/getArticle.do?md=a1598e5b56c65dd903f97a4ba90d19587ce0d187a7a974d93c03da265805012df8a73cfb07a6b0e506824509c5d70aaa6d0326732461ac4f969bc1d54c49048b.
[74] Wang, Chun Liang, Kang, Zhi Hui, Tian, Si Cong, Wu, Jin Hui. Control of spontaneous emission from a microwave driven atomic system. OPTICS EXPRESS[J]. 2012, 20(4): 3509-3518, https://www.webofscience.com/wos/woscc/full-record/WOS:000301041900016.
[75] Tian, SiCong, Kang, ZhiHui, Wang, ChunLiang, Wan, RenGang, Kou, Jun, Zhang, Hang, Jiang, Yun, Cui, HaiNing, Gao, JinYue. Observation of spontaneously generated coherence on absorption in rubidium atomic beam. OPTICS COMMUNICATIONS[J]. 2012, 285(3): 294-299, http://dx.doi.org/10.1016/j.optcom.2011.09.031.
[76] Tian, SiCong, Wan, RenGang, Kang, ZhiHui, Zhang, Hang, Jiang, Yun, Cui, HaiNing, Gao, JinYue. Gain spectrum of a laser-driven tripod-type atom dynamically induced in the presence of spontaneously generated coherence. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2012, 29(5): 881-890, http://ir.ciomp.ac.cn/handle/181722/25550.
[77] Tian, SiCong, Wang, ChunLiang, Tong, CunZhu, Wang, LiJun, Wang, HaiHua, Yang, XiuBin, Kang, ZhiHui, Gao, JinYue. Observation of the fluorescence spectrum for a driven cascade model system in atomic beam. OPTICS EXPRESS[J]. 2012, 20(21): 23559-23569, http://ir.ciomp.ac.cn/handle/181722/34518.
[78] Tian SiCong, Wang ChunLiang, Kang ZhiHui, Yang XiuBin, Wan RenGang, Zhang XiaoJun, Zhang Hang, Jiang Yun, Cui HaiNing, Gao JinYue. Observation of linewidth narrowing due to a spontaneously generated coherence effect. CHINESE PHYSICS B[J]. 2012, 21(6): http://lib.cqvip.com/Qikan/Article/Detail?id=42757114.
[79] 张理达. Extremely narrowed and amplified gain spectrum induced by the Doppler effect. J. PHYS. B: AT. MOL. OPT. PHYS[J]. 2011, 44(无): 135505-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000291870800017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[80] Wang, ChunLiang, Kang, ZhiHui, Tian, SiCong, Jiang, Yun, Gao, JinYue. Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states. PHYSICALREVIEWA[J]. 2009, 79(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000265947500066.

科研活动

   
科研项目
( 1 ) 在耦合量子点中实现自发辐射相干效应的研究, 主持, 国家级, 2014-01--2016-12
( 2 ) 高温环境下工作的光子晶体垂直腔面发射半导体激光器的研究, 主持, 省级, 2014-01--2016-12
( 3 ) 光子晶体纳腔的制备及其在低功耗、高调制速率激光器的应用, 主持, 省级, 2016-01--2018-12
( 4 ) 基于狄拉克锥原理的1.3μm高速量子点光子晶体面发射激光器的研究, 主持, 国家级, 2018-01--2021-12
( 5 ) 中国科学院青年创新促进会人才项目, 主持, 部委级, 2018-01--2021-12
( 6 ) 高速低功耗光子晶体面发射激器的合作研究, 参与, 部委级, 2017-01--2019-12
( 7 ) 量子点及波导耦合输出极低功耗发光器件, 参与, 国家级, 2013-01--2017-12
( 8 ) 百瓦级热管冷却小体积半导体激光器模块的合作研究, 参与, 国家级, 2013-01--2016-12
( 9 ) 锑化物低维结构中红外激光器基础理论与关键技术, 参与, 国家级, 2018-01--2022-12
( 10 ) 高亮度GaN基光子晶体激光器的研究, 参与, 国家级, 2018-01--2020-12
( 11 ) 德国TRUMPF百瓦级半导体碟片激光器研究, 参与, 院级, 2016-01--2017-12
( 12 ) 面向短距离光互连应用关键芯片、器件与模块技术, 参与, 国家级, 2019-07--2023-06
( 13 ) 面向激光 雷达的1250nm高亮度量子点激光器的研究, 主持, 国家级, 2021-01--2023-12
( 14 ) CAS-CIOMP和TUB -RASIC强强联合:快速推进硅光子学的研, 主持, 国家级, 2021-01--2023-12
( 15 ) 低垂直发散角GaSb 基布拉格反射波导半导体激光器研究, 参与, 国家级, 2015-01--2017-12
( 16 ) 超高速直调垂直腔面发射激光器, 主持, 国家级, 2021-12--2024-11
( 17 ) 基于能带反转光场限制效应的高速单模电泵浦拓扑面发 射激光器的研究, 主持, 国家级, 2022-01--2025-12
( 18 ) 面向光发射模块的高速低功耗垂直腔面发射激光器和电驱动芯片的研究, 主持, 省级, 2021-07--2024-06
( 19 ) 长春光机所旭光人才计划, 主持, 市地级, 2021-07--2023-06
( 20 ) 高速低功耗半导体激光器, 参与, 部委级, 2021-01--2023-12
参与会议
(1)Surface-emitting lasers for optical interconnects   Tian Si-Cong   2020-11-05
(2)High power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting lasers   2019-10-22
(3)High power continous wave operation of 1.3 µm quantum dot PCSEL   2019-08-10
(4)Giant Nonlinearity Induced by Tunneling in Triple Quantum Dots   田思聪   2015-09-22
(5)隧穿耦合三量子点系统中双暗态的研究   第十六届全国量子光学学术报告会   田思聪   2014-08-05
(6)Gain spectrum controlled by tunneling in double quantum dots   Tian Si-Cong   2014-04-12
(7)隧穿效应作用的耦合量子点的相干性研究   第三届全国纳米器件结构研讨会   田思聪   2013-11-15

合作情况

柏林工业大学

马格德堡大学


招聘信息

Open positions in Bimberg Center include:

Ÿ   Staff members at full professor, associate professor, and assistant professor levels

Ÿ   Postdoctoral fellows

Ÿ   PhD and MS students

Ÿ   Long-term and short-term visitors

Ÿ   Interns at all levels

 

The research directions of the Bimberg Center

Ÿ   long-wavelength quantum dot HIBBEE laser technology for next generation LIDAR

Ÿ   mode -locked quantum dot lasers for future Terabit/sec metropolitan area networks (MAN)

Ÿ   high bit rate and energy efficien t vertical cavity surface emitting lasers for optical computer interconnects

Ÿ   including in each case module development and based on own development s of quantum materials

 

Desired backgrounds include but not limited to:

Ÿ   photonic device modeling

Ÿ   epitaxial growth

Ÿ   nanostructure characterization

Ÿ   photonic device processing

Ÿ   ultrahigh speed/bit rate measurement techniques

Ÿ   high power semiconductor laser measurement techniques