基本信息

张涛  男  研究员/博导  

上海****/中科院****

高性能陶瓷和超微结构国家重点实验室

中国科学院上海硅酸盐研究所
电子邮件: taozhang@mail.sic.ac.cn
电话:021-69163656

课题组网页:http://www.sic.cas.cn/kybm/skl/yjly/nyhj/zt/

通信地址: 上海市和硕路585号
邮政编码: 201899

研究领域

新能源电池材料及其界面物理与化学

新型储能电池材料与器件

固态锂电池和锂空气电池



招生信息

欢迎对新能源储能电池材料与器件研究感兴趣的同学攻读我课题组的博士和硕士研究生!

招生方向:

新能源电池材料及其界面物理与化学

新型储能电池材料与器件

固态锂电池和锂空气电池


招生专业
080501-材料物理与化学
070304-物理化学
085204-材料工程
招生方向
新能源电池材料及其界面物理与化学
新型储能电池材料与器件
固态锂电池和锂空气电池

教育背景

2004-09--2007-06   复旦大学化学系   物理化学专业理学博士
2001-09--2004-06   湖南大学材料科学与工程学院   材料学硕士
1997-09--2001-06   湖南大学化学化工学院   材料科学与工程专业学士

工作经历

2007年在上海大学理学院任讲师。

2008年开始先后在日本国立三重大学和日本国立产业技术综合研究所从事高比能电池材料和器件的研究。

2015年加入中国科学院上海硅酸盐研究所任研究员,并入选中国科学院“引进海外杰出人才”****和上海****。

社会兼职
2016-06-01-今,国际电化学能源科学院, 理事

专利与奖励

   
专利成果
[1] 张涛, 高英杰, 崔成昊, 孙壮. 一种碳包覆富锂石墨负极材料及其制备方法. 2023103265412, 2023-03-27.
[2] 张涛, 候志前, 孙壮. 一种碳基自支撑电极及其制备方法. 2023100967930, 2023-02-10.
[3] 张涛, 潘国宇, 孙壮. 一种钠离子电池用多孔碳材料及其制备方法. 2023107064037, 2023.
[4] 张涛, 张易楠, 孙壮. 一种原位自支撑凝胶聚合物电解质材料及其制备方法. 202211311614.2, 2022-10-25.
[5] 张涛, 诸德铭, 柏凡, 孙壮. 一种固态锂空气电池正极及其制备方法和应用. CN 202211085470.3, 2022-09-06.
[6] 张涛, 杨亚南. 一种固态锂金属电池及其制备方法. CN 202210189767.8, 2022-02-28.
[7] 周俊, 张涛, 杨亚南. 一种锂镧锆氧/钴酸锂复合材料及其制备方法和应用. CN: CN111697204B, 2022-01-21.
[8] 张涛, 赵晓慧, 孙壮. 一种锂氧气电池用金属氧化物催化剂的制备方法. CN202210338501.5, 2022.
[9] 张涛, 李彦妮, 孙壮. 一种锂氧气电池的正极催化剂及其制备方法. 202210854616.X, 2022.
[10] 张涛, 张易楠, 孙壮. 一种金属空气电池负极表面疏水保护层及其制备方法和应用. CN202210324449.8, 2022.
[11] 张涛. 一种富锂多孔石墨材料及其制备方法. 202210932639.8, 2022.
[12] 张涛, 王浩然, 孙壮. 一种无机陶瓷离子导体基复合固态电解质薄膜及其制备方法. CN 202210094793.2, 2022.
[13] 张涛, 高英杰, 崔成昊, 孙壮. 一种硅碳负极材料及其制备方法和应用. 202210934021.5, 2022.
[14] 张涛, 孙壮. 一种碳载体嵌合金属单质复合材料及其制备方法. CN: CN113471458A, 2021-10-01.
[15] 张涛, 杨楚舒, 孙壮. 一种强碱环境钌颗粒辅助刻蚀制备多孔碳材料的方法. CN: CN111732102B, 2021-06-15.
[16] 张涛, 张晓平, 孙壮. 一种锂空气电池用或锂铜电池用电解液. CN: CN111276740B, 2021-05-25.
[17] 张涛, 赵晓慧, 孙壮. 一种锂空气电池用或锂锂对称电池用电解液. CN: CN111200161B, 2021-05-25.
[18] 张涛, 孙壮, 崔成昊, 杨楚舒. 一种非贵金属辅助化学刻蚀制备多孔碳材料的方法. CN: CN112758912A, 2021-05-07.
[19] 张涛, 王浩然, 孙壮, 周俊. 一种提高准固态锂离子电池性能的电化学预处理方法. CN: CN112599874A, 2021-04-02.
[20] 张涛, 孙壮, 王浩然. 一种锂空气电池的电化学预处理方法. CN: CN111200176B, 2021-03-16.
[21] 张涛, 王浩然, 孙壮, 周俊. 一种有机-无机复合准固态电解质以及准固态锂电池. CN: CN112467194A, 2021-03-09.
[22] 周俊, 张涛, 李应祥. 一种无机固态电解质-正极材料界面用缓冲层及其制备方法和应用. CN: CN111740107A, 2020-10-02.

出版信息

   
发表论文
[1] Sun, Zhuang, Zhao, Xiaohui, Qiu, Wujie, Sun, Bin, Bai, Fan, Liu, Jianjun, Zhang, Tao. Unlock Restricted Capacity via O-Ce Hybridization for Li-Oxygen Batteries. ADVANCED MATERIALS. 2023, http://dx.doi.org/10.1002/adma.202210867.
[2] Hou, Zhiqian, Cui, Chenghao, Yang, Yanan, Zhang, Tao. Electrochemical Oxidation Encapsulated Ru Clusters Enable Robust Durability for Efficient Oxygen Evolution. Small[J]. 2023, [3] Zhang, Yinan, Bai, Fan, Jiang, Hao, Zhang, Tao. A cascade protection strategy from cathode to anode with high air stability for ultralong life Li-air batteries in ambient conditions. ENERGY STORAGE MATERIALS[J]. 2023, 54: 508-516, http://dx.doi.org/10.1016/j.ensm.2022.10.040.
[4] Hou, Zhiqian, Cui, Chenghao, Li, Yanni, Gao, Yingjie, Zhu, Deming, Gu, Yuanfan, Pan, Guoyu, Zhu, Yaqiong, Zhang, Tao. Lattice-Strain Engineering for Heterogeneous Electrocatalytic Oxygen Evolution Reaction. Advanced Materials[J]. 2023, [5] Zhang, YiNan, Jiang, FangLing, Bai, Fan, Jiang, Hao, Zhang, Tao. Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2022, 14(8): 10327-10336, http://dx.doi.org/10.1021/acsami.1c22987.
[6] Wang, HaoRan, Yang, YaNan, Bai, Fan, Zhang, Tao. Anion-Decoordination Cell Formation Process Stabilizes Dual Electrodes for Long-Life Quasi-Solid-State Lithium Metal Battery. ADVANCED MATERIALS INTERFACES[J]. 2022, 9(4): http://dx.doi.org/10.1002/admi.202101840.
[7] Yang, YaNan, Cui, ChengHao, Hou, ZhiQian, Li, YiQiu, Zhang, Tao. Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state battery. ENERGY STORAGE MATERIALS[J]. 2022, 52: 1-9, http://dx.doi.org/10.1016/j.ensm.2022.07.031.
[8] Zhu, DeMing, Bai, Fan, Zhang, YiNan, Yang, YaNan, Sun, Zhuang, Deng, JunWen, Zhang, Tao. A solid-state lithium-oxygen battery operating at ambient temperature and full charge-discharge. JOURNAL OF ENERGY STORAGE[J]. 2022, 56: http://dx.doi.org/10.1016/j.est.2022.105790.
[9] Hong Chen, Fan Bai, Yingxiang Li, Junwen Deng, Shijun Liao, Tao Zhang. Stabilize garnet/electrode interface via low-melting polymer layer in solid-state lithium metal battery. ELECTROCHIMICA ACTA. 2022, 429: http://dx.doi.org/10.1016/j.electacta.2022.140907.
[10] Chen, Peng, Bai, Fan, Deng, Jun Wen, Liu, Bin, Zhang, Tao. Recent progresses and challenges in aqueous lithium-air batteries relating to the solid electrolyte separator: A mini-review. FRONTIERS IN CHEMISTRYnull. 2022, 10: http://dx.doi.org/10.3389/fchem.2022.1035691.
[11] Li, YanNi, Sun, Zhuang, Zhang, Tao. Single-Atomic Zn/Co-Nx Sites Boost Solid-Soluble Synergistic Catalysis for Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES. 2022, [12] Hou, Zhiqian, Sun, Zhuang, Cui, Chenghao, Zhu, Deming, Yang, Yanan, Zhang, Tao. Ru Coordinated ZnIn2S4 Triggers Local Lattice-Strain Engineering to Endow High-Efficiency Electrocatalyst for Advanced Zn-Air Batteries. ADVANCED FUNCTIONAL MATERIALS[J]. 2022, 32(19): http://dx.doi.org/10.1002/adfm.202110572.
[13] Zhang, Yinan, Jiang, Fangling, Jiang, Hao, Yamamoto, Osamu, Zhang, Tao. Dispersion hydrophobic electrolyte enables lithium-oxygen battery enduring saturated water vapor. JOURNAL OF ENERGY CHEMISTRY[J]. 2022, 64(1): 511-519, http://dx.doi.org/10.1016/j.jechem.2021.05.013.
[14] Gao, Yingjie, Sun, Zhuang, Cui, Chenghao, Wang, Haoran, Cao, Wenzheng, Hou, Zhiqian, Zhu, Deming, Yang, Yanan, Zhang, Tao. An Ultrathin, Flexible Solid Electrolyte with High Ionic Conductivity Enhanced by a Mutual Promotion Mechanism. ACS APPLIED MATERIALS & INTERFACES. 2022, [15] Zhang, XiaoPing, Li, YanNi, Deng, JunWen, Mao, Ya, Xie, JingYing, Zhang, Tao. A bromo-nitro redox mediator of BrCH2NO2 for efficient lithium-oxygen batteries. JOURNAL OF POWER SOURCES[J]. 2021, 506: http://dx.doi.org/10.1016/j.jpowsour.2021.230181.
[16] Yang, ChuShu, Sun, Zhuang, Cui, ChengHao, Yang, Cheng, Zhang, Tao. Metal nano-drills directionally regulate pore structure in carbon. CARBON[J]. 2021, 175: 60-68, http://dx.doi.org/10.1016/j.carbon.2020.12.065.
[17] Jiang, Fangling, Ma, Lipo, Sun, Jiyang, Guo, Limin, Peng, Zhangquan, Cui, Zhonghui, Li, Yiqiu, Guo, Xiangxin, Zhang, Tao. Deciphering the Enigma of Li2CO3 Oxidation Using a Solid-State Li-Air Battery Configuration. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(12): 14334-14339, http://dx.doi.org/10.1021/acsami.1c01770.
[18] Wang, Yuling, Bai, Fan, Wang, Aiping, Cui, Zhonghui, Wang, Da, Shi, Siqi, Zhang, Tao. Perfluorinated organics regulating Li2O2 formation and improving stability for Li-oxygen batteries. CHEMICAL COMMUNICATIONS[J]. 2021, 57(24): 3030-3033, https://www.webofscience.com/wos/woscc/full-record/WOS:000631568300011.
[19] Li, YanNi, Jiang, FangLing, Sun, Zhuang, Yamamoto, Osamu, Imanishi, Nobuyuki, Zhang, Tao. Bifunctional 1-Boc-3-Iodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(14): 16437-16444, http://dx.doi.org/10.1021/acsami.1c02192.
[20] Yang, YaNan, Jiang, FangLing, Li, YiQiu, Wang, ZhaoXi, Zhang, Tao. A Surface Coordination Interphase Stabilizes a Solid-State Battery. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2021, 60(45): 24162-24170, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000684731900001.
[21] Sun, Zhuang, Zhao, Xiaohui, Qiu, Wujie, Yang, Chushu, Yamamoto, Osamu, Imanishi, Nobuyuki, Liu, Jianjun, Zhang, Tao. Partial Disproportionation Gallium-Oxygen Reaction Boosts Lithium-Oxygen Batteries. ENERGY STORAGE MATERIALS[J]. 2021, 41: 475-484, http://dx.doi.org/10.1016/j.ensm.2021.06.016.
[22] Sun, Zhuang, Yang, Chushu, Jiang, Fangling, Zhang, Tao. Chimerism of Carbon by Ruthenium Induces Gradient Catalysis. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(34): http://dx.doi.org/10.1002/adfm.202104011.
[23] Cao, Wenzheng, Yang, Yanan, Deng, Junwen, Li, Yiqiu, Cui, Chenghao, Zhang, Tao. Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte. MATERIALS TODAY ENERGY[J]. 2021, 22: http://dx.doi.org/10.1016/j.mtener.2021.100875.
[24] Soga, Shuhei, Bai, Fan, Zhang, Tao, Kakimoto, Kouichi, Mori, Daisuke, Taminato, Sou, Takeda, Yasuo, Yamamoto, Osamu, Imanishi, Nobuyuki. Ambient Air Operation Rechargeable Lithium-Air Battery with Acetic Acid Catholyte. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2020, 167(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000529104700001.
[25] Li, Yingxiang, Li, Yiqiu, Yang, Yanan, Cui, Zhonghui, Wang, Jiacheng, Zhang, Tao. Conversion inorganic interlayer of a LiF/graphene composite in all-solid-state lithium batteries. CHEMICAL COMMUNICATIONS[J]. 2020, 56(11): 1725-1728, https://www.webofscience.com/wos/woscc/full-record/WOS:000513177300022.
[26] Zhang, YiPeng, Li, YiQiu, Cui, ZhongHui, Wang, JiaCheng, Yamamoto, Osamu, Imanishi, Nobuyuki, Zhang, Tao. A porous framework infiltrating Li-O-2 battery: a low-resistance and high-safety system. SUSTAINABLE ENERGY & FUELS[J]. 2020, 4(4): 1600-1606, https://www.webofscience.com/wos/woscc/full-record/WOS:000526855200004.
[27] YaNan Yang, YingXiang Li, YiQiu Li, Tao Zhang. On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes. NATURE COMMUNICATIONS[J]. 2020, 11(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608658/.
[28] Ju, Qiangjian, Ma, Ruguang, Pei, Yu, Guo, Beibei, Liu, Qian, Zhang, Tao, Yang, Minghui, Wang, Jiacheng. Nitrogen-doped carbon spheres decorated with CoSx nanoparticles as multifunctional electrocatalysts for rechargeable zn-air battery and overall water splitting. MATERIALS RESEARCH BULLETIN[J]. 2020, 125: http://dx.doi.org/10.1016/j.materresbull.2020.110770.
[29] Sun, Zhuang, Zhang, Yuchen, Sun, Bin, Yang, Chushu, Zhang, Tao. Micro versus nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithium-oxygen batteries. GREEN CHEMISTRY[J]. 2020, 22(2): 388-396, https://www.webofscience.com/wos/woscc/full-record/WOS:000509965500009.
[30] Yang, ChuShu, Sun, Zhuang, Cui, Zhonghui, Jianga, FangLing, Denga, JunWen, Zhang, Tao. Inward growth of superthin TiC skin on carbon nanotube framework as stable cathode support for Li-O-2 batteries. ENERGY STORAGE MATERIALS[J]. 2020, 30: 59-66, http://dx.doi.org/10.1016/j.ensm.2020.04.018.
[31] Gao, KangNing, Wang, HaoRan, He, MingHui, Li, YiQiu, Cui, ZhongHui, Mao, Ya, Zhang, Tao. Interfacial integration and roll forming of quasi-solid-state Li-O-2 battery through solidification and gelation of ionic liquid. JOURNAL OF POWER SOURCES[J]. 2020, 463: http://dx.doi.org/10.1016/j.jpowsour.2020.228179.
[32] Huo, Hanyu, Wu, Bin, Zhang, Tao, Zheng, Xusheng, Ge, Liang, Xu, Tongwen, Guo, Xiangxin, Sun, Xueliang. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. ENERGY STORAGE MATERIALS[J]. 2019, 18: 59-67, http://dx.doi.org/10.1016/j.ensm.2019.01.007.
[33] Gao, Kangning, He, Minghui, Li, Yiqiu, Zhang, Yipeng, Gao, Jun, Li, Xixiang, Cui, Zhonghui, Zhan, Zhongliang, Zhang, Tao. Preparation of high-density garnet thin sheet electrolytes for all-solid-state Li-Metal batteries by tape-casting technique. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2019, 791: 923-928, http://dx.doi.org/10.1016/j.jallcom.2019.03.409.
[34] Zhang, XiaoPing, Li, YanNi, Sun, YiYang, Zhang, Tao. Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium-Oxygen Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(51): 18394-18398, https://www.webofscience.com/wos/woscc/full-record/WOS:000494498100001.
[35] Xu, Nengneng, Zhang, Yanxing, Wang, Min, Fan, Xiujun, Zhang, Tao, Peng, Luwei, Zhou, XiaoDong, Qiao, Jinli. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. NANO ENERGY[J]. 2019, 65: http://dx.doi.org/10.1016/j.nanoen.2019.104021.
[36] Wang, Fanqi, Wu, Meifen, Zhang, Tao, Wen, Zhaoyin. Suppressing Self-Discharge of Vanadium Diboride by Zwitterionicity of the Polydopamine Coating Layer. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(5): 5123-5128, [37] Ma, Ruguang, Lin, Gaoxin, Zhou, Yao, Liu, Qian, Zhang, Tao, Shan, Guangcun, Yang, Minghui, Wang, Jiacheng. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ COMPUTATIONAL MATERIALS[J]. 2019, 5(1): 469-483, http://dx.doi.org/10.1038/s41524-019-0210-3.
[38] Fu, Jingming, Guo, Xiangxin, Huo, Hanyu, Chen, Yue, Zhang, Tao. Easily Decomposed Discharge Products Induced by Cathode Construction for Highly Energy-Efficient Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(16): 14803-14809, https://www.webofscience.com/wos/woscc/full-record/WOS:000466052800031.
[39] Zhao, Xiaohui, Sun, Zhuang, Yao, Zhenguo, Cui, Zhonghui, Wang, Jiacheng, Zhang, Tao. Halosilane triggers anodic silanization and cathodic redox for stable and efficient lithium-O-2 batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(31): 18237-18243, https://www.webofscience.com/wos/woscc/full-record/WOS:000479056700047.
[40] Sun, Zhuang, Wang, HaoRan, Wang, Jing, Zhang, Tao. Oxygen-free cell formation process obtaining LiF protected electrodes for improved stability in lithium-oxygen batteries. ENERGY STORAGE MATERIALS[J]. 2019, 23: 670-677, https://www.webofscience.com/wos/woscc/full-record/WOS:000495867200066.
[41] Xu, Nengneng, Zhang, Yanxing, Zhang, Tao, Liu, Yuyu, Qiao, Jinli. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. NANO ENERGY[J]. 2019, 57: 176-185, http://www.corc.org.cn/handle/1471x/2163476.
[42] XiaoPing Zhang, YiYang Sun, Zhuang Sun, ChuShu Yang, Tao Zhang. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium–oxygen batteries. NATURE COMMUNICATIONS[J]. 2019, 10(1): 1-12, http://gooa.las.ac.cn/external/index?type=-1&pid=1507677.
[43] Chen, Yue, He, Minghui, Zhao, Ning, Fu, Jingming, Huo, Hanyu, zhang, Tao, Li, Yiqi, Xu, Fangfang, Guo, Xiangxin. Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. JOURNAL OF POWER SOURCES[J]. 2019, 420: 15-21, http://dx.doi.org/10.1016/j.jpowsour.2019.02.085.
[44] Zhou, Tingsheng, Ma, Ruguang, Zhang, Tao, Li, Zichuang, Yang, Minghui, Liu, Qian, Zhu, Yufang, Wang, Jiacheng. Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2019, 536: 42-52, http://dx.doi.org/10.1016/j.jcis.2018.10.021.
[45] Guo, Beibei, Ju, Qiangjian, Ma, Ruguang, Li, Zichuang, Liu, Qian, Ai, Fei, Yang, Minghui, Kaskel, Stefan, Luo, Jun, Zhang, Tao, Wang, Jiacheng. Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc-air battery electrodes. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(33): 19355-19363, http://dx.doi.org/10.1039/c9ta06411g.
[46] Zhang, XiaoPing, Wen, ZhaoYin, Zhang, Tao. Ionic activation via a hybrid IL-SSE interfacial layer for Li-O-2 batteries with 99.5% coulombic efficiency. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(27): 12945-12949, http://ir.sic.ac.cn/handle/331005/25199.
[47] Li, Xuemei, Dong, Fang, Xu, Nengneng, Zhang, Tao, Li, Kaixi, Qiao, Jinli. Co3O4/MnO2/Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(18): 15591-15601, http://ir.sic.ac.cn/handle/331005/24925.
[48] Zhang, Tao, Wen, ZhaoYin. A High-Rate Ionic Liquid Lithium-O-2 Battery with LiOH Product. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2017, 121(11): 5968-5973, http://ir.sic.ac.cn/handle/331005/23678.
[49] Shao, Xuan, Zhang, Tao, Wen, Zhaoyin. One Step Fabrication of Co3O4-PPy Cathode for Lithium-O-2 Batteries. CHINESE JOURNAL OF CHEMISTRY[J]. 2017, 35(1): 35-40, http://lib.cqvip.com/Qikan/Article/Detail?id=671424828.
[50] Zhang, Tao, Liao, Kaiming, He, Ping, Zhou, Haoshen. A self-defense redox mediator for efficient lithium-O-2 batteries. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2016, 9(3): 1024-1030, https://www.webofscience.com/wos/woscc/full-record/WOS:000372243600032.
[51] Tao, Yiming, Rui, Kun, Wen, Zhaoyin, Wang, Qingsong, Jin, Jun, Zhang, Tao, Wu, Tian. FeS2 microsphere as cathode material for rechargeable lithium batteries. SOLIDSTATEIONICS[J]. 2016, 290: 47-52, http://dx.doi.org/10.1016/j.ssi.2016.04.005.
[52] Zhang, Sanpei, Wen, Zhaoyin, Jin, Jun, Zhang, Tao, Yang, Jianhua, Chen, Chunhua. Controlling uniform deposition of discharge products at the nanoscale for rechargeable Na-O-2 batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(19): 7238-7244, http://ir.sic.ac.cn/handle/331005/23089.
[53] He, Ping, Zhang, Tao, Jiang, Jie, Zhou, Haoshen. Lithium-Air Batteries with Hybrid Electrolytes. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2016, 7(7): 1267-1280, https://www.webofscience.com/wos/woscc/full-record/WOS:000373867600030.
[54] Liao, Kaiming, Wang, Xuebin, Sun, Yang, Tang, Daiming, Han, Min, He, Ping, Jiang, Xiangfen, Zhang, Tao, Zhou, Haoshen. An oxygen cathode with stable full discharge-charge capability based on 2D conducting oxide. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2015, 8(7): 1992-1997, https://www.webofscience.com/wos/woscc/full-record/WOS:000357541300010.
[55] Song, Zhiping, Qian, Yumin, Zhang, Tao, Otani, Minoru, Zhou, Haoshen. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. ADVANCED SCIENCE[J]. 2015, 2(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000368998500009.
[56] Guo, Shaohua, Yu, Haijun, Liu, Pan, Ren, Yang, Zhang, Tao, Chen, Mingwei, Ishida, Masayoshi, Zhou, Haoshen. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2015, 8(4): 1237-1244, https://www.webofscience.com/wos/woscc/full-record/WOS:000352275500011.
[57] Li, Fujun, Tang, DaiMing, Zhang, Tao, Liao, Kaiming, He, Ping, Golberg, Dmitri, Yamada, Atsuo, Zhou, Haoshen. Superior Performance of a Li-O-2 Battery with Metallic RuO2 Hollow Spheres as the Carbon-Free Cathode. ADVANCED ENERGY MATERIALS[J]. 2015, 5(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000357880100008.
[58] Li, Fujun, Wu, Shichao, Li, De, Zhang, Tao, He, Ping, Yamada, Atsuo, Zhou, Haoshen. The water catalysis at oxygen cathodes of lithium-oxygen cells. NATURE COMMUNICATIONS[J]. 2015, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000358861400004.
[59] Liao, Kaiming, Zhang, Tao, Wang, Yongqing, Li, Fujun, Jian, Zelang, Yu, Haijun, Zhou, Haoshen. Nanoporous Ru as a Carbon- and Binder-Free Cathode for Li-O-2 Batteries. CHEMSUSCHEM[J]. 2015, 8(8): 1429-1434, https://www.webofscience.com/wos/woscc/full-record/WOS:000353511400015.
[60] Yi, Jin, Liao, Kaiming, Zhang, Chaofeng, Zhang, Tao, Li, Fujun, Zhou, Haoshen. Facile in Situ Preparation of Graphitic-C3N4@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O-2 Battery. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(20): 10823-10827, https://www.webofscience.com/wos/woscc/full-record/WOS:000355382800023.
[61] Tao Zhang. Gel-Derived Cation-π Stacking Films of Carbon Nanotube-Graphene Complexes as Oxygen Cathodes. ChemSusChem. 2014, [62] Jian, Zelang, Chen, Yong, Li, Fujun, Zhang, Tao, Liu, Chang, Zhou, Haoshen. High capacity Na-O-2 batteries with carbon nanotube paper as binder-free air cathode. JOURNAL OF POWER SOURCES[J]. 2014, 251: 466-469, http://dx.doi.org/10.1016/j.jpowsour.2013.11.091.
[63] Song, Zhiping, Qian, Yumin, Liu, Xizheng, Zhang, Tao, Zhu, Yanbei, Yu, Haijun, Otani, Minoru, Zhou, Haoshen. A quinone-based oligomeric lithium salt for superior Li-organic batteries. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2014, 7(12): 4077-4086, http://dx.doi.org/10.1039/c4ee02575j.
[64] Li, Fujun, Zhang, Tao, Zhou, Haoshen. Challenges of non-aqueous Li-O-2 batteries: electrolytes, catalysts, and anodes. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2013, 6(4): 1125-1141, https://www.webofscience.com/wos/woscc/full-record/WOS:000316468600007.
[65] Li, De, Zhang, Tao, Liu, Xizheng, He, Ping, Peng, Ruwen, Wang, Mu, Han, Min, Zhou, Haoshen. A hybrid phase-transition model of olivine LiFePO4 for the charge and discharge processes. JOURNAL OF POWER SOURCES[J]. 2013, 233: 299-303, http://dx.doi.org/10.1016/j.jpowsour.2013.01.133.
[66] Zhang, Tao, Zhou, Haoshen. A reversible long-life lithium-air battery in ambient air. NATURE COMMUNICATIONS[J]. 2013, 4: https://www.webofscience.com/wos/woscc/full-record/WOS:000320589900013.
[67] Li, Fujun, Zhang, Tao, Yamada, Yuki, Yamada, Atsuo, Zhou, Haoshen. Enhanced Cycling Performance of Li-O2 Batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes. ADVANCED ENERGY MATERIALS[J]. 2013, 3(4): 532-538, https://www.webofscience.com/wos/woscc/full-record/WOS:000317430700018.
[68] Li, Fujun, Tang, DaiMing, Chen, Yong, Golberg, Dmitri, Kitaura, Hirokazu, Zhang, Tao, Yamada, Atsuo, Zhou, Haoshen. Ru/ITO: A Carbon-Free Cathode for Nonaqueous Li-O-2 Battery. NANO LETTERS[J]. 2013, 13(10): 4702-4707, https://www.webofscience.com/wos/woscc/full-record/WOS:000326356300020.
[69] Yu, Haijun, Wang, Yarong, Asakura, Daisuke, Hosono, Eiji, Zhang, Tao, Zhou, Haoshen. Electrochemical kinetics of the 0.5Li(2)MnO(3)center dot 0.5LiMn(0.42)Ni(0.42)Co(0.16)O(2) 'composite' layered cathode material for lithium-ion batteries. RSC ADVANCES[J]. 2012, 2(23): 8797-8807, [70] Zhang, Tao, Zhou, Haoshen. From Li-O-2 to Li-Air Batteries: Carbon Nanotubes/Ionic Liquid Gels with a Tricontinuous Passage of Electrons, Ions, and Oxygen. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2012, 51(44): 11062-11067, https://www.webofscience.com/wos/woscc/full-record/WOS:000310479300021.
[71] Takahashi, K, Ohmura, J, Im, D, Lee, D J, Zhang, T, Imanishi, N, Hirano, A, Phillipps, M B, Takeda, Y, Yamamoto, O. A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6 Al-0.4(PO4)(3). JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2012, 159(4): A342-A348, https://www.webofscience.com/wos/woscc/full-record/WOS:000300488300003.
[72] Shimonishi, Yuta, Zhang, Tao, Imanishi, Nobuyuki, Im, Dongmin, Lee, Dong Joon, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. JOURNAL OF POWER SOURCES[J]. 2011, 196(11): 5128-5132, http://dx.doi.org/10.1016/j.jpowsour.2011.02.023.
[73] Zhang, Tao, Imanishi, Nobuyuki, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu. Stability of Li/Polymer Electrolyte-Ionic Liquid Composite/Lithium Conducting Glass Ceramics in an Aqueous Electrolyte. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2011, 14(4): A45-A48, https://www.webofscience.com/wos/woscc/full-record/WOS:000287408700005.
[74] Shimonishi, Yuta, Toda, Akiharu, Zhang, Tao, Hirano, Atsushi, Imanishi, Nobuyuki, Yamamoto, Osamu, Takeda, Yasuo. Synthesis of garnet-type Li7-xLa3Zr2O12-1/2x and its stability in aqueous solutions. SOLID STATE IONICS[J]. 2011, 183(1): 48-53, http://dx.doi.org/10.1016/j.ssi.2010.12.010.
[75] Liu, S, Wang, H, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O, Yang, J. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)(2)N/Li. JOURNAL OF POWER SOURCES[J]. 2011, 196(18): 7681-7686, http://dx.doi.org/10.1016/j.jpowsour.2011.04.001.
[76] Zhang, Tao, Imanishi, Nobuyuki, Takeda, Yasuo, Yamamoto, Osamu. Aqueous Lithium/Air Rechargeable Batteries. CHEMISTRY LETTERSnull. 2011, 40(7): 668-673, https://www.webofscience.com/wos/woscc/full-record/WOS:000293423800002.
[77] Zhang, Tao, Imanishi, Nobuyuki, Shimonishi, Yuta, Hirano, Atsushi, Xie, Jian, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. Stability of a Water-Stable Lithium Metal Anode for a Lithium-Air Battery with Acetic Acid-Water Solutions. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2010, 157(2): A214-A218, https://www.webofscience.com/wos/woscc/full-record/WOS:000273222700015.
[78] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O, Zhao, X B, Cao, G S. Electrochemical performance of all-solid-state Li batteries based LiMn0.5Ni0.5O2 cathode and NASICON-type electrolyte. JOURNAL OF POWER SOURCES[J]. 2010, 195(24): 8341-8346, http://dx.doi.org/10.1016/j.jpowsour.2010.06.066.
[79] Liu, S, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O, Yang, J. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)(2)N/Li. JOURNAL OF POWER SOURCES[J]. 2010, 195(19): 6847-6853, http://dx.doi.org/10.1016/j.jpowsour.2010.04.027.
[80] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O. An amorphous LiCo1/3Mn1/3Ni1/3O2 thin film deposited on NASICON-type electrolyte for all-solid-state Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2010, 195(17): 5780-5783, http://dx.doi.org/10.1016/j.jpowsour.2010.03.040.
[81] Zhang, Tao, Liu, Sisi, Imanishi, Nobuyuki, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu. Water-Stable Lithium Electrode and Its Application in Aqueous Lithium/Air Secondary Batteries. ELECTROCHEMISTRY[J]. 2010, 78(5): 360-362, https://www.webofscience.com/wos/woscc/full-record/WOS:000277593800014.
[82] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O. Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes. MATERIALS CHEMISTRY AND PHYSICS[J]. 2010, 120(2-3): 421-425, http://dx.doi.org/10.1016/j.matchemphys.2009.11.031.
[83] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O, Cao, G S, Zhao, X B. Amorphous LiCoO2 thin films on Li1+x+yAlxTi2-xSiyP3-yO12 prepared by radio frequency magnetron sputtering for all-solid-state Li-ion batteries. ELECTROCHIMICA ACTA[J]. 2010, 55(19): 5440-5445, http://dx.doi.org/10.1016/j.electacta.2010.04.095.
[84] Shimonishi, Y, Zhang, T, Johnson, P, Imanishi, N, Hirano, A, Takeda, Y, Yamamoto, O, Sammes, N. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions. JOURNAL OF POWER SOURCES[J]. 2010, 195(18): 6187-6191, http://dx.doi.org/10.1016/j.jpowsour.2009.11.023.
[85] Zhang, Tao, Imanishi, Nobuyuki, Shimonishi, Yuta, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. A novel high energy density rechargeable lithium/air battery. CHEMICAL COMMUNICATIONS[J]. 2010, 46(10): 1661-1663, https://www.webofscience.com/wos/woscc/full-record/WOS:000274827000018.
[86] Liu, S, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O, Yang, J. Lithium Dendrite Formation in Li/Poly(ethylene oxide)-Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2010, 157(10): A1092-A1098, https://www.webofscience.com/wos/woscc/full-record/WOS:000281306900011.
[87] Hasegawa, Satoshi, Imanishi, Nobuyuki, Zhang, Tao, Xie, Jian, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu. Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water. JOURNAL OF POWER SOURCES[J]. 2009, 189(1): 371-377, http://dx.doi.org/10.1016/j.jpowsour.2008.08.009.
[88] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O. Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering. ELECTROCHIMICA ACTA[J]. 2009, 54(20): 4631-4637, http://dx.doi.org/10.1016/j.electacta.2009.03.007.
[89] Zhang, Tao, Imanishi, Nobuyuki, Hasegawa, Satoshi, Hirano, Atsushi, Xie, Jian, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium-Air Secondary Batteries. ELECTROCHEMICALANDSOLIDSTATELETTERS[J]. 2009, 12(7): A132-A135, [90] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, O. Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes. JOURNAL OF POWER SOURCES[J]. 2009, 189(1): 365-370, http://dx.doi.org/10.1016/j.jpowsour.2008.08.015.
[91] Xie, J, Imanishi, N, Zhang, T, Hirano, A, Takeda, Y, Yamamoto, Y. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. JOURNAL OF POWER SOURCES[J]. 2009, 192(2): 689-692, http://dx.doi.org/10.1016/j.jpowsour.2009.03.001.
[92] Zhang, Tao, Imanishi, Nobuyuki, Hasegawa, Satoshi, Hirano, Atsushi, Xie, Jian, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. Li/Polymer Electrolyte/Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium-Air Secondary Batteries with an Aqueous Electrolyte. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2008, 155(12): A965-A969, https://www.webofscience.com/wos/woscc/full-record/WOS:000260479700015.
[93] Zhang, T, Zhang, H P, Yang, L C, Wang, B, Wu, Y P, Takamur, T. The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity. ELECTROCHIMICA ACTA[J]. 2008, 53(18): 5660-5664, http://dx.doi.org/10.1016/j.electacta.2008.03.017.
[94] Imanishi, Nobuyuki, Hasegawa, Satoshi, Zhang, Tao, Hirano, Atushi, Takeda, Yasuo, Yamamoto, Osamu. Lithium anode for lithium-air secondary batteries. JOURNAL OF POWER SOURCES[J]. 2008, 185(2): 1392-1397, http://dx.doi.org/10.1016/j.jpowsour.2008.07.080.
[95] Zhao, Nahong, Fu, Lijun, Yang, Lichun, Zhang, Tao, Wang, Gaojun, Wu, Yuping, van Ree, Teunis. Nanostructured anode materials for Li-ion batteries. PURE AND APPLIED CHEMISTRY[J]. 2008, 80(11): 2283-2295, https://www.webofscience.com/wos/woscc/full-record/WOS:000260928500006.
[96] Gao, J, Zhang, H P, Zhang, T, Wu, Y P, Holze, R. Preparation of Cu coating on graphite electrode foil and its suppressive effect on PC composition. SOLID STATE IONICS[J]. 2007, 178(19-20): 1225-1229, https://www.webofscience.com/wos/woscc/full-record/WOS:000249252700008.
[97] Fu, L J, Gao, J, Zhang, T, Cao, Q, Yang, L C, Wu, Y P, Holze, R. Effect of Cu2O coating on graphite as lithium ion battery in PC-based anode material of electrolyte. JOURNAL OF POWER SOURCES[J]. 2007, 171(2): 904-907, https://www.webofscience.com/wos/woscc/full-record/WOS:000250066900082.
[98] Fu, L J, Gao, J, Zhang, T, Cao, Q, Yang, L C, Wu, Y P, Holze, R, Wu, H Q. Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2007, 174(2): 1197-1200, http://dx.doi.org/10.1016/j.jpowsour.2007.06.030.
[99] Fu, L J, Zhang, T, Cao, Q, Zhang, H P, Wu, Y P. Preparation and characterization of three-dimentionally ordered mesoporus titania microparticles as anode material for lithium ion battery. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2007, 9(8): 2140-2144, https://www.webofscience.com/wos/woscc/full-record/WOS:000248883100051.
[100] Zhang, T, Fu, L J, Gao, J, Wu, Y P, Holze, R, Wu, H Q. Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. JOURNAL OF POWER SOURCES[J]. 2007, 174(2): 770-773, http://dx.doi.org/10.1016/j.jpowsour.2007.06.231.
[101] Zhang, T, Gao, J, Fu, L J, Yang, L C, Wu, Y P, Wu, H Q. Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2007, 17(13): 1321-1325, https://www.webofscience.com/wos/woscc/full-record/WOS:000245042900012.
[102] Zhang, T, Gao, J, Zhang, H P, Yang, L C, Wu, Y P, Wu, H Q. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2007, 9(5): 886-890, http://dx.doi.org/10.1016/j.elecom.2006.11.026.
[103] Gao, J, Zhang, H P, Fu, L J, Zhang, T, Wu, Y P, Takamura, T, Wu, H Q, Holze, R. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver. ELECTROCHIMICA ACTA[J]. 2007, 52(17): 5417-5421, http://dx.doi.org/10.1016/j.electacta.2007.02.064.
[104] Fu, L J, Liu, H, Zhang, H P, Li, C, Zhang, T, Wu, Y P, Wu, H Q. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2006, 159(1): 219-222, http://dx.doi.org/10.1016/j.jpowsour.2006.04.081.
[105] Zhang, T, Fu, L J, Takeuchi, H, Suzuki, J, Sekine, K, Takamura, T, Wu, Y P. Studies of the structure of vacuum deposited silicon films on metal substrates as anode materials for Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2006, 159(1): 349-352, http://dx.doi.org/10.1016/j.jpowsour.2006.04.045.
[106] Fu, LJ, Liu, H, Zhang, HP, Li, C, Zhang, T, Wu, YP, Holze, R, Wu, HQ. Synthesis and electrochemical performance of novel core/shell structured nanocomposites. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2006, 8(1): 1-4, http://dx.doi.org/10.1016/j.elecom.2005.10.006.
[107] Gao, J, Fu, L J, Zhang, H P, Zhang, T, Wu, Y P, Wu, H Q. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2006, 8(11): 1726-1730, http://dx.doi.org/10.1016/j.elecom.2006.08.011.
[108] Zhang, Tao, Fu, Lijun, Gao, Jie, Yang, Lichun, Wu, Yuping, Wu, Hoqing. Core-shell Si/C nanocomposite as anode material for lithium ion batteries. PURE AND APPLIED CHEMISTRY[J]. 2006, 78(10): 1889-1896, https://www.webofscience.com/wos/woscc/full-record/WOS:000240922900009.
发表著作
(1) 锂空气电池先进技术(第2,3章), Advanced Technology of Lithium-Air Battery, 东京CMC出版社, 2013-08, 第 1 作者
(2) 先进锂电池纳米技术(第15章), Nanoscale Technology for Advanced Lithium Batteries, 纽约Springer出版社, 2013-11, 第 1 作者

科研活动

   
科研项目
( 1 ) 二次锂空气电池关键材料及其基础科学问题, 主持, 部委级, 2015-03--2018-06
( 2 ) 中国科学院****, 主持, 部委级, 2016-01--2018-12
( 3 ) 碳/非碳复合空气正极载体及其表面氧气电化学研究, 主持, 国家级, 2017-01--2020-12
( 4 ) 有机碘在氧化环境下生长类SEI膜抑制锂氧气电池中穿梭效应的研究, 主持, 国家级, 2019-01--2022-12
( 5 ) 固态电解质宏量制备, 主持, 院级, 2018-07--2021-07

指导学生

现指导学生

张晓平  博士研究生  080501-材料物理与化学  

高康宁  硕士研究生  080501-材料物理与化学  

李应祥  硕士研究生  080501-材料物理与化学  

赵晓慧  硕士研究生  085204-材料工程  

张亿鹏  硕士研究生  080501-材料物理与化学  

杨亚南  硕士研究生  080501-材料物理与化学  

王浩然  博士研究生  080501-材料物理与化学  

李彦妮  博士研究生  080501-材料物理与化学  

杨楚舒  博士研究生  080501-材料物理与化学