基本信息
陈艳  女  博导  中国科学院力学研究所
电子邮件: chenyan@lnm.imech.ac.cn
通信地址: 北京市北四环西路15号
邮政编码: 100190

研究领域

(1)无序固体(非晶合金、高熵合金、聚合物等)变形断裂及其微结构关联
(2)先进结构材料冲击动力学


招生信息

   
招生专业

080102-固体力学


招生方向

(1)无序固体力学 

(2)金属变形失效与服役安全

工作经历

2021-12~至今,    中国科学院力学研究所, 研究员

2016-09~至今,    中国科学院大学/工学院,岗位教授

2013-12~2021-11,   中国科学院力学研究所, 副研究员

2011-07~2013-12,       中国科学院力学研究所, 助理研究员


教授课程

弹塑性力学

专利与奖励


专利成果
[1] 戴兰宏, 张洧菡, 李统, 乔禹, 陈艳, 汪海英. 一种确定材料Johnson-Cook动态本构模型的方法. CN: CN116312902B, 2023-08-04.

[2] 戴兰宏, 陈金玺, 陈艳. 一种共晶高熵合金丝材的制备方法及共晶高熵合金丝材. ZL 2021 1 1345375.8, 2021-11-15.

荣誉与奖励

(1)国家优秀青年科学基金,2023

(2)国家自然科学奖二等奖,  2020

(3)王仁先生青年科技奖,  2013


出版信息

   
发表论文
[1] 向亮, 陈艳, 戴兰宏. 轴向加载下不同捻向多股钢丝绳的力学行为研究. 应用力学学报[J]. 2023, 40(5): 1025-1033, [2] J. X. Chen, T.Li, 陈艳, F.H.Cao, H.Y.Wang, L.H.Dai. Ultra-strong heavy-drawn eutectic high entropy alloy wire. Acta Mater.[J]. 2023, 243: 118515-14, [3] 龚臣成, 陈艳, 戴兰宏. 聚脲弹性体力学性能与本构关系研究进展. 力学学报[J]. 2023, 55(1): 1-23, [4] Meng, Jin, Qiao, Yu, Chen, Yan, Liu, TianWei, Li, Tong, Wang, HaiYing, Dai, Lan Hong. A high-entropy alloy syntactic foam with exceptional cryogenic and dynamic properties. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING[J]. 2023, 876: http://dx.doi.org/10.1016/j.msea.2023.145146.
[5] 曹富华, 陈艳, 汪海英, 戴兰宏. Chemical inhomogeneity inhabits grain boundary fracture: A comparative study in CrCoNi medium entropy alloy. J. Mater. Sci. Tech.[J]. 2023, 153(-): 228-241, [6] Liang, LunWei, Dai, ShiCheng, Chen, Yan, Wang, HaiYing, Wang, YunJiang, Dai, LanHong. Emergent failure transition of pearlitic steel at extremely high strain rates. COMPUTATIONAL MATERIALS SCIENCE[J]. 2023, 219: http://dx.doi.org/10.1016/j.commatsci.2022.112005.
[7] Jin Meng, Yu Qiao, TianWei Liu, YuanYuan Tan, FuHua Cao, Yan Chen, HaiYing Wang, LanHong Dai. Eutectic high entropy alloy syntactic foam. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY[J]. 2023, 149: 177-189, http://dx.doi.org/10.1016/j.jmst.2022.12.009.
[8] Su, MingYao, Zhang, WeiHan, Tan, YuanYuan, Chen, Yan, Wang, HaiYing, Dai, LanHong. Microstructural Evolution of Shear Localization in High-Speed Cutting of CoCrFeMnNi High-Entropy Alloy. METALS[J]. 2023, 13(4): http://dx.doi.org/10.3390/met13040647.
[9] Li, Tong, Liu, Tianwei, Zhao, Shiteng, Chen, Yan, Luan, Junhua, Jiao, Zengbao, Ritchie, Robert O, Dai, Lanhong. Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-023-38531-4.
[10] Tong Li, Jinxi Chen, Feng Chen, Yan Chen, Lanhong Dai. Enhancing plasticity of ‘self-sharpening’ tungsten high-entropy alloy via tailoring μ-precipitation. MATERIALS RESEARCH EXPRESS[J]. 2023, 10(7): https://doaj.org/article/b7c755f6cb544ef2ae2eeb29be88c953.
[11] Lian, Jie, Song, Ruyue, Chen, Yan, Dai, Lanhong. Vortex Evolution Behavior in Self-Assembly of Flow Units in Metallic Glasses. ACTA MECHANICA SOLIDA SINICA[J]. 2023, http://dx.doi.org/10.1007/s10338-023-00409-9.
[12] Chen, Jian, Liu, TianWei, Cao, FuHua, Wang, HaiYing, Chen, Yan, Dai, LanHong. Deformation Behavior and Microstructure Evolution of CoCrNi Medium-Entropy Alloy Shaped Charge Liners. METALS[J]. 2022, 12(5): http://dx.doi.org/10.3390/met12050811.
[13] Chen Li, Fuhua Cao, Yan Chen, Haiying Wang, Lanhong Dai. Crystal Plasticity Model Analysis of the Effect of Short-Range Order on Strength-Plasticity of Medium Entropy Alloys. METALS[J]. 2022, 12: https://doaj.org/article/9cdf758cc3034005a0a878b1ddc04ec5.
[14] Chen, Yan, Dai, Lanhong. Failure behavior and criteria of metallic glasses. ACTA MECHANICA SINICAnull. 2022, 38(2): https://www.sciengine.com/doi/10.1007/s10409-022-09022-x.
[15] Rao, Wei, Chen, Yan, Dai, LanHong. A constitutive model for metallic glasses based on two-temperature nonequilibrium thermodynamics. INTERNATIONAL JOURNAL OF PLASTICITY[J]. 2022, 154: http://dx.doi.org/10.1016/j.ijplas.2022.103309.
[16] Yu Qiao, FuHua Cao, Yan Chen, HaiYing Wang, LanHong Dai. Impact tension behavior of heavy-drawn nanocrystalline CoCrNi medium entropy alloy wire. MATERIALS SCIENCE & ENGINEERING A[J]. 2022, 856: http://dx.doi.org/10.1016/j.msea.2022.144041.
[17] Xie ZhouCan, Chen Yan, Wang HaiYing, Dai LanHong. Atomic-level mechanism of spallation microvoid nucleation in medium entropy alloys under shock loading. SCIENCE CHINA-TECHNOLOGICAL SCIENCES[J]. 2021, 64(7): 1360-1370, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7059205&detailType=1.
[18] Pu, Z, Xie, Z C, Sarmah, R, Chen, Yan, Lu, C, Ananthakrishna, G, Dai, L H. Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature. PHILOSOPHICAL MAGAZINE[J]. 2021, 101(2): 154-178, https://www.webofscience.com/wos/woscc/full-record/WOS:000573154800001.
[19] Chen, JinXi, Chen, Yan, Liu, JunPeng, Liu, TianWei, Dai, LanHong. Anomalous size effect in micron-scale CoCrNi medium-entropy alloy wire. SCRIPTA MATERIALIA[J]. 2021, 199: http://dx.doi.org/10.1016/j.scriptamat.2021.113897.
[20] Qiao, Yu, Chen, Yan, Cao, FuHua, Wang, HaiYing, Dai, LanHong. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING[J]. 2021, 158: http://dx.doi.org/10.1016/j.ijimpeng.2021.104008.
[21] Gong, Chencheng, Chen, Yan, Li, Ting, Liu, Zhanli, Zhuang, Zhuo, Guo, Baohua, Wang, Haiying, Dai, Lanhong. Free volume based nonlinear viscoelastic model for polyurea over a wide range of strain rates and temperatures. MECHANICS OF MATERIALS[J]. 2021, 152: http://dx.doi.org/10.1016/j.mechmat.2020.103650.
[22] Zhang, Meng, Chen, Yan, Dai, LanHong. Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses. JOURNAL OF PHYSICAL CHEMISTRY B[J]. 2021, 125(13): 3419-3425, http://dx.doi.org/10.1021/acs.jpcb.1c00034.
[23] Cao, Fuhua, Chen, Yan, Zhao, Shiteng, Ma, En, Dai, Lanhong. Grain boundary phase transformation in a CrCoNi complex concentrated alloy. ACTA MATERIALIA[J]. 2021, 209: http://dx.doi.org/10.1016/j.actamat.2021.116786.
[24] 陈艳. Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loading. Acta Mater.. 2020, [25] Liu, Yao, Cai, Songlin, Chen, Yan, Su, Mingyao, Dai, Lanhong. A nanotwin-based analytical model to predict dynamics in cryogenic orthogonal machining copper. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY[J]. 2020, 111(11-12): 3189-3205, [26] 刘兴发, 陈艳, 戴兰宏. 内生晶体非晶合金复合材料变形场演化与剪切带行为. 中国科学:物理学、力学、天文学[J]. 2020, 50(6): 49-57, http://lib.cqvip.com/Qikan/Article/Detail?id=7102077231.
[27] Liu, JunPeng, Chen, JinXi, Liu, TianWei, Li, Chen, Chen, Yan, Dai, LanHong. Superior strength-ductility CoCrNi medium-entropy alloy wire. SCRIPTA MATERIALIA[J]. 2020, 181: 19-24, http://dx.doi.org/10.1016/j.scriptamat.2020.02.002.
[28] Liang, LunWei, Wang, YunJiang, Chen, Yan, Wang, HaiYing, Dai, LanHong. Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings. ACTA MATERIALIA[J]. 2020, 186: 267-277, http://dx.doi.org/10.1016/j.actamat.2019.12.052.
[29] Liu, XingFa, Tian, ZhiLi, Zhang, XianFeng, Chen, HaiHua, Liu, TianWei, Chen, Yan, Wang, YunJiang, Dai, LanHong. "Self-sharpening" tungsten high-entropy alloy. ACTA MATERIALIA[J]. 2020, 186: 257-266, http://dx.doi.org/10.1016/j.actamat.2020.01.005.
[30] Xiang, L, Liang, L W, Wang, Y J, Chen, Y, Wang, H Y, Dai, L H. One-step annealing optimizes strength-ductility tradeoff in pearlitic steel wires. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING[J]. 2019, 757: 1-13, http://dx.doi.org/10.1016/j.msea.2019.04.086.
[31] Zhang, M, Chen, Y, He, R G, Guo, S F, Ma, J, Dai, L H. Probing the role of Johari-Goldstein relaxation in the plasticity of metallic glasses. MATERIALS RESEARCH LETTERS[J]. 2019, 7(9): 383-391, https://doaj.org/article/e9cc2fc963af4761bbff099bd6867905.
[32] Liang, Lunwei, Xiang, Liang, Wang, Yunjiang, Chen, Yan, Wang, Haiying, Dai, Lanhong. Ratchetting in Cold-Drawn Pearlitic Steel Wires. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE[J]. 2019, 50A(10): 4561-4568, https://www.webofscience.com/wos/woscc/full-record/WOS:000485037500009.
[33] Zhang, M, Chen, Y, Li, W. On the origin of softening in the plastic deformation of metallic glasses. INTERNATIONAL JOURNAL OF PLASTICITY[J]. 2019, 116: 24-38, http://dspace.imech.ac.cn/handle/311007/78714.
[34] Lunwei Liang, Liang Xiang, Yunjiang Wang, Yan Chen, Haiying Wang, Lanhong Dai. Ratchetting in Cold-Drawn Pearlitic Steel Wires. METALLURGICAL AND MATERIALS TRANSACTIONS. 2019, 50(10): [35] Pu, Z, Chen, Y, Dai, L H. Strong resistance to hydrogen embrittlement of high-entropy alloy. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING[J]. 2018, 736: 156-166, http://dx.doi.org/10.1016/j.msea.2018.08.101.
[36] Liu, X, Lu, Z X, Chen, Y, Sui, Y L, Dai, L H. Improved J Estimation by GE/EPRI Method for the Thin-Walled Pipes With Small Constant-Depth Circumferential Surface Cracks. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME[J]. 2018, 140(1): http://dspace.imech.ac.cn/handle/311007/72251.
[37] M. Zhang, Y. Chen, D. Wei, L. H. Dai. Extraordinary creep relaxation time in a La-based metallic glass. 2018, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SSJDAE40AD8F569C5D31C54E848B8ECEF436&DbName=SSJDLAST&DbCode=SSJD&yx=&pr=&URLID=&bsm=.
[38] ZhiLi Tian, YunJiang Wang, Yan Chen, LanHong Dai. Strain gradient drives shear banding in metallic glasses. PHYSICAL REVIEW B: COVERING CONDENSED MATTER AND MATERIALS PHYSICS. 2017, 96(9): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SBQK91619940D5E34BC20175CADDA4BC5490&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[39] Xiang, L, Wang, H Y, Chen, Y, Guan, Y J, Dai, L H. Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES[J]. 2017, 129: 103-118, http://dx.doi.org/10.1016/j.ijsolstr.2017.09.008.
[40] Guo, Chuan Fei, Chen, Yan, Tang, Lu, Wang, Feng, Ren, Zhifeng. Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. NANO LETTERS[J]. 2016, 16(1): 594-600, http://dx.doi.org/10.1021/acs.nanolett.5b04290.
[41] 陈艳. Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electodes. Nano Lett.. 2016, [42] Chen, Y, Dai, L H. Nature of crack-tip plastic zone in metallic glasses. INTERNATIONAL JOURNAL OF PLASTICITY[J]. 2016, 77: 54-74, http://dx.doi.org/10.1016/j.ijplas.2015.10.004.
[43] 陈艳, 戴兰宏. 非晶合金剪切带失稳临界条件及方向. 北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集null. 2015, http://www.irgrid.ac.cn/handle/1471x/1093239.
[44] S.L. Cai, Y. Chen, G.G. Ye, M.Q. Jiang, H.Y. Wang, L.H. Dai. Characterization of the deformation field in large-strain extrusion machining. JOURNAL OF MATERIALS PROCESSING TECH.. 2015, 48-58, http://dx.doi.org/10.1016/j.jmatprotec.2014.08.022.
[45] Chen, J H, Chen, Y, Jiang, M Q, Chen, X W, Fu, H M, Zhang, H F, Dai, L H. Dynamic shear punch behavior of tungsten fiber reinforced Zr-based bulk metallic glass matrix composites. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING[J]. 2015, 79: 22-31, http://dx.doi.org/10.1016/j.ijimpeng.2014.07.006.
[46] Xiang, L, Wang, H Y, Chen, Y, Guan, Y J, Wang, Y L, Dai, L H. Modeling of multi-strand wire ropes subjected to axial tension and torsion loads. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES[J]. 2015, 58: 233-246, http://dx.doi.org/10.1016/j.ijsolstr.2015.01.007.
[47] Chen, J H, Chen, Y, Jiang, M Q, Chen, X W, Zhang, H F, Dai, L H. On the compressive failure of tungsten fiber reinforced Zr-based bulk metallic glass composite. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES[J]. 2015, 69-70: 428-441, http://dx.doi.org/10.1016/j.ijsolstr.2015.05.008.
[48] Zeng, F, Chen, Y, Jiang, M Q, Lu, C, Dai, L H. Dynamic fragmentation induced by network-like shear bands in a Zr-based bulk metallic glass. INTERMETALLICS[J]. 2015, 56: 96-100, http://www.irgrid.ac.cn/handle/1471x/931947.
[49] 孟积兴, 陈艳, 龙国荣, 姚学锋. 金属玻璃在不同应变率控制条件下的形变及破坏特征. 中国力学大会-2015论文摘要集null. 2015, http://www.irgrid.ac.cn/handle/1471x/1093224.
[50] Chen, Yan, Dai, Lanhong. Onset and Direction of Shear Banding Instability in Metallic Glasses. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY[J]. 2014, 30(6): 616-621, http://www.irgrid.ac.cn/handle/1471x/1757518.
[51] G.G. Ye, Y. Chen, S.F. Xue, L.H. Dai. Critical cutting speed for onset of serrated chip flow in high speed machining. INTERNATIONAL JOURNAL OF MACHINE TOOLS AND MANUFACTURE. 2014, 18-33, http://dx.doi.org/10.1016/j.ijmachtools.2014.06.006.
[52] 陈艳, 戴兰宏. 非晶合金剪切带失稳临界条件及方向. 第十三届全国物理力学学术会议论文摘要集null. 2014, http://www.irgrid.ac.cn/handle/1471x/956414.
[53] Lanhong Dai. Direct observation on the evolution of shear banding and buckling in Tungsten fiber reinforced Zr-based bulk metallic glasses composite. Metallurgical and Materials Transactions A. 2014, [54] J.H. Chen, M.Q. Jiang, Y. Chen, L.H. Dai. Strain rate dependent shear banding behavior of a Zr-based bulk metallic glass composite. MATERIALS SCIENCE & ENGINEERING A. 2013, 576: 134-139, http://dx.doi.org/10.1016/j.msea.2013.03.082.
[55] Chen, Y, Jiang, M Q, Dai, L H. Collective evolution dynamics of multiple shear bands in bulk metallic glasses. INTERNATIONAL JOURNAL OF PLASTICITY[J]. 2013, 50: 18-36, http://dx.doi.org/10.1016/j.ijplas.2013.03.010.
[56] Li, N, Chen, Y, Jiang, M Q, Li, D J, He, J J, Wu, Y, Liu, L. A thermoplastic forming map of a Zr-based bulk metallic glass. ACTA MATERIALIA[J]. 2013, 61(6): 1921-1931, http://www.irgrid.ac.cn/handle/1471x/623728.
[57] Chen Yan, Jiang MinQiang, Dai LanHong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. ACTA PHYSICA SINICA[J]. 2012, 61(3): http://dx.doi.org/10.7498/aps.61.036201.
[58] 陈艳, 戴兰宏. 非晶合金塑脆断裂转变的控制参数. 中国科学:物理学、力学、天文学[J]. 2012, 42(6): 551-559, http://lib.cqvip.com/Qikan/Article/Detail?id=42217808.
[59] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报=ACTA PHYSICA SINICA[J]. 2012, 61(3): 036201-, http://lib.cqvip.com/Qikan/Article/Detail?id=40817613.
[60] 陈艳, 蒋敏强, 魏宇杰, 戴兰宏. 基于原子结构及相互作用势的非晶合金断裂准则. 第十二届全国物理力学学术会议论文摘要集null. 2012, 67-67, http://www.irgrid.ac.cn/handle/1471x/831813.
[61] 戴兰宏, 陈艳. Intrinsic lengths govern failure mode transition in metallic glasses. THE 23RD INTERNATIONAL CONGRESS OF THEORETICAL AND APPLIED MECHANICS (ICTAM2012)null. 2012, http://www.irgrid.ac.cn/handle/1471x/591089.
[62] Guo, Chuan Fei, Nayyar, Vishal, Zhang, Zhuwei, Chen, Yan, Miao, Junjie, Huang, Rui, Liu, Qian. Path-Guided Wrinkling of Nanoscale Metal Films. ADVANCED MATERIALS[J]. 2012, 24(22): 3010-3014, https://www.doi.org/10.1002/adma.201200540.
[63] 陈艳. 金属玻璃的塑性及断裂机理的研究. 陈艳. 金属玻璃的塑性及断裂机理的研究D.北京.中国科学院研究生院.2011.. 2011, http://www.irgrid.ac.cn/handle/1471x/591098.
[64] Chen Yan, Jiang MinQiang, Dai LanHong. How does the initial free volume distribution affect shear band formation in metallic glass?. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2011, 54(8): 1488-1494, http://lib.cqvip.com/Qikan/Article/Detail?id=38454913.
[65] 陈艳. 金属玻璃塑性及断裂机理的研究. 博士论文.北京.中国科学院力学所研究所.2011. 2011, http://www.irgrid.ac.cn/handle/1471x/532121.
[66] Chen, Y, Jiang, M Q, Wei, Y J, Dai, L H. Failure criterion for metallic glasses. PHILOSOPHICAL MAGAZINE[J]. 2011, 91(36): 4536-4554, http://dx.doi.org/10.1080/14786435.2011.613859.
[67] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报. 2011, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=WLXB201203051&DbName=CJFD2012&DbCode=CJFQ&yx=Y&pr=&URLID=11.1958.O4.20111216.1114.043&bsm=QK0101;.
[68] CHEN Yan, JIANG MinQiang, DAI LanHong. How does the initial free volume distribution affect shear band formation in metallic glass?. 中国科学:物理学、力学、天文学英文版[J]. 2011, 54(8): 1488-1494, http://lib.cqvip.com/Qikan/Article/Detail?id=38454913.
[69] 陈艳, 戴兰宏. 非晶合金多重剪切带协同演化行为. 塑性力学新进展——2011年全国塑性力学会议论文集null. 2011, 57-64, http://www.irgrid.ac.cn/handle/1471x/390211.
[70] Li, Huiling, Chen, Yan, Dai, Lanhong. Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy. APPLIED PHYSICS LETTERS[J]. 2008, 92(15): http://dspace.imech.ac.cn/handle/311007/26070.
[71] Tong Li, JinXi Chen, TianWei Liu, Yan Chen, JunHua Luan, ZengBao Jiao, ChainTsuan Liu, LanHong Dai. D022 precipitates strengthened W-Ta-Fe-Ni refractory high-entropy alloy. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY. http://dx.doi.org/10.1016/j.jmst.2023.07.069.

科研活动

   
科研项目
( 1 ) 非晶合金裂纹尖端场及其塑性內禀关联机制, 负责人, 国家任务, 2016-01--2019-12
( 2 ) XXX冲击损伤破坏机理研究, 负责人, 中国科学院计划, 2014-06--2016-05
( 3 ) 非晶合金多重剪切带形成与演化动力学研究, 负责人, 国家任务, 2013-01--2015-12
( 4 ) 多级结构钢索冲击疲劳与失效机理, 负责人, 中国科学院计划, 2016-01--2022-12
( 5 ) 非晶合金塑性流动失稳的动力学起源, 负责人, 国家任务, 2020-01--2023-12
( 6 ) QT500断裂韧性评估分析, 负责人, 境内委托项目, 2021-10--2022-12
( 7 ) 典型金属冲击动态响应及结构失效机理研究, 负责人, 国家任务, 2022-10--2025-09
( 8 ) 复杂体系动态结构成像极限, 参与, 中国科学院计划, 2023-08--2028-08
( 9 ) 无序合金冲击动力学, 负责人, 国家任务, 2024-01--2026-12
参与会议
(1)无序结构材料率相关本构与塑性流动行为   湍流与非线性力学2022年学术年会   陈艳   2023-02-19
(2)先进结构材料率相关变形失效行为   2022年全国爆炸与冲击动力学发展战略研讨会   陈艳   2022-09-02
(3)非晶合金塑性流动失稳及其无序结构起源   中国力学学会第116次青年学术沙龙   陈艳   2022-04-10
(4)非晶合金塑性流动不稳定的动力学起源   第二届物理力学青年学者学术研讨会   2021-05-16
(5)聚脲动态力学行为及本构模型   第三届全国爆炸与冲击动力学青年学者学术研讨会   2019-10-18
(6)Plastic zone instability and serrated flow in metallic glasses   国际材联-亚洲材料大会2016暨中国材料大会   陈艳   2016-10-23
(7)Nature of crack-tip plastic zone in metallic glasses   第十一届国际金属玻璃会议   2016-07-08
(8)非晶合金剪切局部化条件及其尺寸效应   中国材料大会   2015-07-11
(9)非晶合金剪切带失稳临界条件及方向   北京力学会第21届学术年会暨北京振动工程学会第22届学术年会   2015-01-11
(10)非晶合金延脆断裂的控制参数   全国固体力学大会-2014   2014-10-10
(11)Atomic-based failure criterion for bulk metallic glasses   第十五届国际快冷合金材料大会   2014-08-24
(12)Onset and direction of shear banding instability in metallic glasses   第十届国际金属玻璃会议   2014-06-02
(13)非晶合金局部变形分叉行为   全国塑性力学会议   2013-10-26
(14)On bifurcation of homogeneous deformation in metallic glasses   第十三届国际断裂力学大会   2013-06-18

指导学生

已指导学生

刘兴发  博士研究生  080102-固体力学  

宋如月  硕士研究生  080102-固体力学  

龚臣成  博士研究生  080102-固体力学  

蒲卓  博士研究生  080102-固体力学  

廉杰  硕士研究生  080102-固体力学  

陈金玺  博士研究生  080104-工程力学  

现指导学生

朱秀举  硕士研究生  080102-固体力学  

周文博  硕士研究生  080102-固体力学