基本信息

梁锐晶  女  博导  

中国科学院深圳先进技术研究院

电子邮件: rj.liang@siat.ac.cn
通信地址: 深圳市南山区西丽深圳大学城学苑大道1068号
邮政编码: 518055

研究领域

仿生纳米医药与肿瘤诊疗一体

基因递送系统与肿瘤免疫治疗

招生信息

硕士

博士

招生专业
070305-高分子化学与物理
071010-生物化学与分子生物学
0703Z1-化学生物学
招生方向
纳米医药
肿瘤诊疗
仿生递送

教育背景

2011-09--2016-06   华中科技大学   博士
2007-09--2011-06   华中科技大学   本科
学历

博士研究生

学位
博士

教授课程

化学生物学

专利与奖励


奖励信息
(1) 深圳市南山区领航人才, 特等奖, 市地级, 2019
(2) 深圳市高层次专业人才后备级人才, 特等奖, 市地级, 2018
专利成果
[1] 蔡林涛, 何华美, 刘兰兰, 梁锐晶, 周海梅, 潘宏. 一种克服肿瘤耐药的方法. CN: CN110755457B, 2021-08-17.
[2] 蔡林涛, 梁锐晶, 韩志群, 郑明彬. 复合声敏剂、其制备方法、应用、使用方法、用途及药物组合物. CN: CN109125723B, 2021-06-18.
[3] 蔡林涛, 马爱青, 陈华清, 郑明彬, 罗震宇, 田浩, 梁锐晶, 陈志宽, 韩志群. 一种白蛋白负载金属卟啉配合物纳米颗粒的制备方法及其应用. CN: CN108030921B, 2021-05-25.
[4] 蔡林涛, 韩志群, 梁锐晶, 郑明彬, 刘陈立. 温敏金纳米笼及制备方法和应用、载药温敏金纳米笼及制备方法. CN: CN108030922B, 2021-02-19.
[5] 蔡林涛, 梁锐晶, 刘兰兰, 韩志群, 何华美, 郑明彬. 金纳米笼-二氧化锰复合纳米颗粒及其制备方法和应用. CN: CN107670040B, 2020-10-27.
[6] 蔡林涛, 梁锐晶, 张升平, 陈华清, 马爱青, 尹婷. 阿霉素纳米颗粒及其制备方法和应用、声动力联合化学治疗肿瘤的药物. CN: CN111388447A, 2020-07-10.
[7] 蔡林涛, 陈华清, 马爱青, 梁锐晶, 刘兰兰, 张升平, 郑明彬. 金属-ICG配合物及制备方法、金属-ICG配合物白蛋白纳米颗粒及制备方法和应用. CN: CN111358946A, 2020-07-03.
[8] 蔡林涛, 陈华清, 马爱青, 刘兰兰, 梁锐晶, 张升平, 郑明彬. 负载金属卟啉的脂质体纳米颗粒及其制备方法和应用. CN: CN111358945A, 2020-07-03.
[9] 蔡林涛, 何华美, 刘兰兰, 梁锐晶, 周海梅, 潘宏. 一种改善肿瘤缺氧的新方法. CN: CN110893196A, 2020-03-20.
[10] 蔡林涛, 张升平, 梁锐晶, 陈华清, 刘兰兰, 何华美. 一种脑肿瘤靶向的仿生载药纳米颗粒及其制备方法和用途. CN: CN110859826A, 2020-03-06.
[11] 蔡林涛, 周海梅, 刘兰兰, 何华美, 梁锐晶. 一种纳米颗粒载药系统及其制备方法和应用. CN: CN110859817A, 2020-03-06.
[12] 蔡林涛, 周海梅, 刘兰兰, 何华美, 梁锐晶. 一种包载免疫佐剂纳米颗粒及应用. CN: CN110755387A, 2020-02-07.
[13] 蔡林涛, 梁锐晶, 韩志群, 郑明彬. 中空二氧化锰纳米颗粒及其制备方法和应用. CN: CN108529681A, 2018-09-14.
[14] 蔡林涛, 罗震宇, 郑明彬, 田浩, 陈志宽, 梁锐晶, 韩志群, 陈泽. 一种白蛋白纳米颗粒的制备方法及制得的白蛋白纳米颗粒与应用. CN: CN108295046A, 2018-07-20.
[15] 朱锦涛, 梁锐晶. 一种生物可降解聚合物纳米粒子的无皂制备方法. CN: CN102516564A, 2012-06-27.
[16] 朱锦涛, 梁锐晶. 一种生物可降解聚合物纳米粒子的制备方法. CN: CN102516566A, 2012-06-27.

出版信息

   
发表论文
[1] Xie, Jun, Liang, Ruijing, Li, Qianru, Wang, Ke, Hussain, Mubashir, Dong, Liyun, Shen, Chen, Li, Heli, Shen, Guanxin, Zhu, Jintao, Tao, Juan. Photosensitizer-loaded gold nanocages for immunogenic phototherapy of aggressive melanoma. ACTA BIOMATERIALIA[J]. 2022, 142: 264-273, http://dx.doi.org/10.1016/j.actbio.2022.01.051.
[2] Pan, Hong, Li, Wenjun, Chen, Ze, Luo, Yingmei, He, Wei, Wang, Mengmeng, Tang, Xiaofan, He, Huamei, Liu, Lanlan, Zheng, Mingbin, Jiang, Xin, Yin, Ting, Liang, Ruijing, Ma, Yifan, Cai, Lintao. Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumor. BIOACTIVE MATERIALS[J]. 2021, 6(4): 951-962, http://dx.doi.org/10.1016/j.bioactmat.2020.09.025.
[3] Xing, Jiehua, Yin, Ting, Li, Shuiming, Xu, Tiantian, Ma, Aiqing, Chen, Ze, Luo, Yingmei, Lai, Zhengyu, Lv, Yingnian, Pan, Hong, Liang, Ruijing, Wu, Xinyu, Zheng, Mingbin, Cai, Lintao. Sequential Magneto-Actuated and Optics-Triggered Biomicrorobots for Targeted Cancer Therapy. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(11): http://dx.doi.org/10.1002/adfm.202008262.
[4] Chen, Huaqing, Liu, Lanlan, Ma, Aiqing, Yin, Ting, Chen, Ze, Liang, Ruijing, Qiu, Yuzhi, Zheng, Mingbin, Cai, Lintao. Noninvasively immunogenic sonodynamic therapy with manganese protoporphyrin liposomes against triple-negative breast cancer. BIOMATERIALS[J]. 2021, 269: http://dx.doi.org/10.1016/j.biomaterials.2020.120639.
[5] Zhou, Haimei, He, Huamei, Liang, Ruijing, Pan, Hong, Chen, Ze, Deng, Guanjun, Zhang, Shengping, Ma, Yifan, Liu, Lanlan, Cai, Lintao. In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy. BIOMATERIALS[J]. 2021, 269: http://dx.doi.org/10.1016/j.biomaterials.2021.120670.
[6] Chen, Huaqing, Ma, Aiqing, Yin, Ting, Chen, Ze, Liang, Ruijing, Pan, Hong, Shen, Xin, Zheng, Mingbin, Cai, Lintao. In Situ Photocatalysis of TiO-Porphyrin-Encapsulated Nanosystem for Highly Efficient Oxidative Damage against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(11): 12573-12583, http://dx.doi.org/10.1021/acsami.0c00921.
[7] Liu, Lanlan, He, Huamei, Luo, Zhenyu, Zhou, Haimei, Liang, Ruijing, Pan, Hong, Ma, Yifan, Cai, Lintao. In Situ Photocatalyzed Oxygen Generation with Photosynthetic Bacteria to Enable Robust Immunogenic Photodynamic Therapy in Triple-Negative Breast Cancer. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(10): [8] He, Huamei, Liu, Lanlan, Liang, Ruijing, Zhou, Haimei, Pan, Hong, Zhang, Shengping, Cai, Lintao. Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer. ACTA BIOMATERIALIA[J]. 2020, 104: 188-197, http://dx.doi.org/10.1016/j.actbio.2020.01.012.
[9] Shen, Chen, Gao, Yujie, Li, Jun, Du, Hongyao, Liang, Ruijing, Sun, Yanhong, Xie, Jun, Dong, Liyun, Zhang, Yamin, Zhu, Jinjin, Zhang, Bo, Shen, Guanxin, Chen, Xiang, Zhu, Jintao, Tao, Juan. Intrinsic Adjuvanticity of Branched Polyethylenimine In Vitro and Subcutaneously. ACS APPLIED POLYMER MATERIALS[J]. 2020, 2(4): 1438-1447, https://www.webofscience.com/wos/woscc/full-record/WOS:000526391500004.
[10] He, Huamei, Liu, Lanlan, Zhang, Shengping, Zheng, Mingbin, Ma, Aiqing, Chen, Ze, Pan, Hong, Zhou, Haimei, Liang, Ruijing, Cai, Lintao. Smart gold nanocages for mild heat -triggered drug release and breaking chemoresistance. JOURNAL OF CONTROLLED RELEASE[J]. 2020, 323: 387-397, http://dx.doi.org/10.1016/j.jconrel.2020.04.029.
[11] Han, Yutong, Pan, Hong, Li, Wenjun, Chen, Ze, Ma, Aiqing, Yin, Ting, Liang, Ruijing, Chen, Fuming, Ma, Nan, Jin, Yan, Zheng, Mingbin, Li, Baohong, Cai, Lintao. T Cell Membrane Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy. ADVANCED SCIENCE[J]. 2019, 6(15): https://doaj.org/article/7cb0059b4e0e44bdb9a278463a7861cc.
[12] Ma, Aiqing, Chen, Huaqing, Cui, Yanhong, Luo, Zhenyu, Liang, Ruijing, Wu, Zhihao, Chen, Ze, Yin, Ting, Ni, Jun, Zheng, Mingbin, Cai, Lintao. Metalloporphyrin Complex-Based Nanosonosensitizers for Deep-Tissue Tumor Theranostics by Noninvasive Sonodynamic Therapy. SMALL[J]. 2019, 15(5): [13] Zhang, Baozhen, Liang, Ruijing, Zheng, Mingbin, Cai, Lintao, Fan, Xiujun. Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications. International Journal of Molecular Sciences[J]. 2019, 20(15): https://doaj.org/article/aef5f06cd8e2407996eaab6907b3a215.
[14] Chen, Fuming, Zang, Zhongsheng, Chen, Ze, Cui, Liao, Chang, Zhiguang, Ma, Aiqing, Yin, Ting, Liang, Ruijing, Han, Yutong, Wu, Zhihao, Zheng, Mingbin, Liu, Chenli, Cai, Lintao. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. BIOMATERIALS[J]. 2019, 214: 119226-, http://dx.doi.org/10.1016/j.biomaterials.2019.119226.
[15] Chen, Zhikuan, Liu, Lanlan, Liang, Ruijing, Luo, Zhenyu, He, Huamei, Wu, Zhihao, Tian, Hao, Zheng, Mingbin, Ma, Yifan, Cai, Lintao. Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS NANO[J]. 2018, 12(8): 8633-8645, http://ir.siat.ac.cn:8080/handle/172644/14607.
[16] Liang, Ruijing, Liu, Lanlan, He, Huamei, Chen, Zhikuan, Han, Zhiqun, Luo, Zhenyu, Wu, Zhihao, Zheng, Mingbin, Ma, Yifan, Cai, Lintao. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. BIOMATERIALS[J]. 2018, 177: 149-160, http://ir.siat.ac.cn:8080/handle/172644/14596.
[17] Liu, Lanlan, He, Huamei, Liang, Ruijing, Yi, Huqiang, Meng, Xiaoqing, Chen, Zhikuan, Pan, Hong, Ma, Yifan, Cai, Lintao. ROS-Inducing Micelles Sensitize Tumor-Associated Macrophages to TLR3 Stimulation for Potent Immunotherapy. BIOMACROMOLECULES[J]. 2018, 19(6): 2146-2155, http://ir.siat.ac.cn:8080/handle/172644/14597.
[18] Luo, Zhenyu, Tian, Hao, Liu, Lanlan, Chen, Zhikuan, Liang, Ruijing, Chen, Ze, Wu, Zhihao, Ma, Aiqing, Zheng, Mingbin, Cai, Lintao. Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose. THERANOSTICS[J]. 2018, 8(13): 3584-3596, http://ir.siat.ac.cn:8080/handle/172644/14598.
[19] Jun Xie, Qianqian Liu, Jun Li, Ruijing Liang, Juan Tao, Jintao Zhu, Zhiping Zhang. Hollow mesoporous silica nanoparticles with encapsulated immunogenic peptides for melanoma therapy. Nanomedicine: Nanotechnology, Biology, and Medicine. 2018, 14(5): 1762-1762, http://dx.doi.org/10.1016/j.nano.2017.11.073.
[20] Tian, Hao, Luo, Zhenyu, Liu, Lanlan, Zheng, Mingbin, Chen, Ze, Ma, Aiqing, Liang, Ruijing, Han, Zhiqun, Lu, Chengyu, Cai, Lintao. Cancer Cell Membrane-Biomimetic Oxygen Nanocarrier for Breaking Hypoxia-Induced Chemoresistance. ADVANCED FUNCTIONAL MATERIALS[J]. 2017, 27(38): [21] Liang, Ruijing, Xie, Jun, Li, Jun, Wang, Ke, Liu, Liping, Gao, Yujie, Hussain, Mubashir, Shen, Guanxin, Zhu, Jintao, Tao, Juan. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. BIOMATERIALS[J]. 2017, 149: 41-50, http://dx.doi.org/10.1016/j.biomaterials.2017.09.029.
[22] Xie, Jun, Yang, Chaohua, Liu, Qianqian, Li, Jun, Liang, Ruijing, Shen, Chen, Zhang, Yi, Wang, Ke, Liu, Liping, Shezad, Khurram, Sullivan, Martin, Xu, Yong, Shen, Guanxin, Tao, Juan, Zhu, Jintao, Zhang, Zhiping. Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response. SMALL[J]. 2017, 13(40): n/a-n/a, https://www.webofscience.com/wos/woscc/full-record/WOS:000413416400005.
[23] Wang, Ke, Jin, SeonMi, Xu, Jiangping, Liang, Ruijing, Shezad, Khurram, Xue, Zhigang, Xie, Xiaolin, Lee, Eunji, Zhu, Jintao. Electric-Field-Assisted Assembly of Polymer-Tethered Gold Nanorods in Cylindrical Nanopores. ACS NANO[J]. 2016, 10(5): 4954-4960, https://www.webofscience.com/wos/woscc/full-record/WOS:000376825100007.
[24] Liang, Ruijing, Xu, Jiangping, Li, Weikun, Liao, Yonggui, Wang, Ke, You, Jichun, Zhu, Jintao, Jiang, Wei. Precise Localization of Inorganic Nanoparticles in Block Copolymer Micellar Aggregates: From Center to Interface. MACROMOLECULES[J]. 2015, 48(1): 256-263, https://www.webofscience.com/wos/woscc/full-record/WOS:000348085600027.
[25] Xu, Jiangping, Wang, Ke, Liang, Ruijing, Yang, Yi, Zhou, Huamin, Xie, Xiaolin, Zhu, Jintao. Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions. LANGMUIR[J]. 2015, 31(45): 12354-12361, https://www.webofscience.com/wos/woscc/full-record/WOS:000365150700005.
[26] Hu, Yuandu, Wang, Jianying, Li, Chengnian, Li, Zhao, Liang, Ruijing, Wang, Qin, Wang, Hong, Zhu, Jintao, Yang, Yajiang. Non-Spherical Hollow Microgels with Uniform Sizes and Tunable Shapes from Microfluidic-Assisted Approach. SCIENCE OF ADVANCED MATERIALS[J]. 2015, 7(5): 902-909, https://www.webofscience.com/wos/woscc/full-record/WOS:000349140900012.
[27] Li, Jun, Wang, Yujue, Liang, Ruijing, An, Xiangjie, Wang, Ke, Shen, Guanxin, Tu, Yating, Zhu, Jintao, Tao, Juan. Recent advances in targeted nanoparticles drug delivery to melanoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINEnull. 2015, 11(3): 769-794, http://dx.doi.org/10.1016/j.nano.2014.11.006.
[28] Jia, Xiaolu, Hu, Yuandu, Wang, Ke, Liang, Ruijing, Li, Jingyi, Wang, Jianying, Zhu, Jintao. Uniform Core-Shell Photonic Crystal Microbeads as Microcarriers for Optical Encoding. LANGMUIR[J]. 2014, 30(40): 11883-11889, https://www.webofscience.com/wos/woscc/full-record/WOS:000343195800006.
[29] Liang, Ruijing, Xu, Jiangping, Deng, Renhua, Wang, Ke, Liu, Shanqin, Li, Jingyi, Zhu, Jintao. Assembly of Polymer-Tethered Gold Nanoparticles under Cylindrical Confinement. ACS MACRO LETTERS[J]. 2014, 3(5): 486-490, https://www.webofscience.com/wos/woscc/full-record/WOS:000336418000019.
[30] Liang, Ruijing, Dong, Liyun, Deng, Renhua, Wang, Jing, Wang, Ke, Sullivan, Martin, Liu, Shanqin, Wang, Jianyin, Zhu, Jintao, Tao, Juan. Surfactant-free biodegradable polymeric nanoparticles generated from self-organized precipitation route: Cellular uptake and cytotoxicity. EUROPEAN POLYMER JOURNAL[J]. 2014, 57: 187-201, http://dx.doi.org/10.1016/j.eurpolymj.2014.05.017.
[31] Liu, Shanqin, Cai, Mingle, Deng, Renhua, Wang, Jianying, Liang, Ruijing, Zhu, Jintao. Fabrication of porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation approach. KOREA-AUSTRALIA RHEOLOGY JOURNAL[J]. 2014, 26(1): 63-71, https://www.webofscience.com/wos/woscc/full-record/WOS:000332267100007.
[32] Li, Weikun, Zhu, Xiaoguang, Wang, Jianying, Liang, Ruijing, Li, Jingyi, Liu, Shanqin, Tu, Guoli, Zhu, Jintao. Encapsulation of pristine fullerene C-60 within block copolymer micelles through interfacial instabilities of emulsion droplets. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2014, 418: 81-86, http://dx.doi.org/10.1016/j.jcis.2013.12.004.
[33] Liang, Ruijing, Wang, Jing, Wu, Xian, Dong, Liyun, Deng, Renhua, Wang, Ke, Sullivan, Martin, Liu, Shanqin, Wu, Min, Tao, Juan, Yang, Xiangliang, Zhu, Jintao. Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity. NANOTECHNOLOGY[J]. 2013, 24(45): https://www.webofscience.com/wos/woscc/full-record/WOS:000326081400012.
[34] Xiao, Min, Liang, Ruijing, Deng, Renhua, Dong, Liyun, Yi, Shenggang, Zhu, Jintao, Tao, Juan. pH-Sensitive cisplatin-loaded gold nanoparticles for potential melanoma therapy. JOURNAL OF CONTROLLED RELEASEnull. 2013, 172(1): E44-E44, http://dx.doi.org/10.1016/j.jconrel.2013.08.093.
[35] Li, Weikun, Zhang, Peng, Dai, Ming, He, Jie, Babu, Taarika, Xu, YeLong, Deng, Renhua, Liang, Ruijing, Lu, MingHui, Nie, Zhihong, Zhu, Jintao. Ordering of Gold Nanorods in Confined Spaces by Directed Assembly. MACROMOLECULES[J]. 2013, 46(6): 2241-2248, https://www.webofscience.com/wos/woscc/full-record/WOS:000316847500023.
[36] Wang, Jing, Liang, Ruijing, Jiang, Honghao, Zhu, Jintao, Tu, Yating, Tao, Juan. A simple route to prepare multifunctional PLA nanoparticles against melanoma. JOURNAL OF CONTROLLED RELEASEnull. 2013, 172(1): E43-E43, http://dx.doi.org/10.1016/j.jconrel.2013.08.092.
[37] Xu, Wenjing, Yu, Xi, Liang, Ruijing, Liu, Shanqin, Tian, Qianwei, Deng, Renhua, Zhu, Jintao. Generation of polymer nanocapsules via a membrane-extrusion emulsification approach. MATERIALS LETTERS[J]. 2012, 77: 96-99, http://dx.doi.org/10.1016/j.matlet.2012.03.004.
[38] Liang, Ruijing, Zhu, Jintao. Monodisperse PLA/PLGA nanoparticle fabrication through a surfactant-free route. JOURNAL OF CONTROLLED RELEASEnull. 2011, 152: E129-E131, http://dx.doi.org/10.1016/j.jconrel.2011.08.170.
[39] Yu, Xi, Zhao, Ziliang, Nie, Wei, Deng, Renhua, Liu, Shanqin, Liang, Ruijing, Zhu, Jintao, Ji, Xiangling. Biodegradable Polymer Microcapsules Fabrication through a Template-Free Approach. LANGMUIR[J]. 2011, 27(16): 10265-10273, https://www.webofscience.com/wos/woscc/full-record/WOS:000293662800077.
[40] Xu Jiangping, Li Jun, Yang Yi, Wang Ke, Xu Nan, Li Jingyi, Liang Ruijing, Shen Lei, Xie Xiaolin, Tao Juan, Zhu Jintao. Block Copolymer Capsules with Structure‐Dependent Release Behavior. Angewandte Chemie[J]. http://dx.doi.org/10.1002/ange.201607982.

科研活动

   
科研项目
( 1 ) 靶向增氧纳米金笼的构建及肿瘤诊疗一体化研究, 负责人, 国家任务, 2018-01--2020-12
( 2 ) 基于靶向增氧纳米光敏剂的氧干预肿瘤诊疗研究, 负责人, 地方任务, 2018-03--2020-03
( 3 ) 靶向增氧纳米光敏剂的构建及肿瘤精准诊疗研究, 负责人, 研究所自选, 2017-08--2019-08
( 4 ) 肿瘤光学精准诊疗关键技术研发, 参与, 地方任务, 2021-01--2023-12
( 5 ) 基于巨噬细胞的纳米基因递送系统的构建及肿瘤精准治疗研究, 负责人, 地方任务, 2022-01--2024-12
( 6 ) 病原示踪复合标记体系的设计与合成, 参与, 国家任务, 2021-12--2026-11
( 7 ) 新型智能仿生聚集态纳米诊疗系统, 参与, 国家任务, 2020-12--2022-11
( 8 ) 靶向增氧纳米光敏剂的构建及其肿瘤诊疗应用, 负责人, 国家任务, 2017-05--2018-09
( 9 ) 级联靶向聚氨基酸纳米载体用于体内基因递送和巨噬细胞重编程, 负责人, 地方任务, 2023-01--2024-12
( 10 ) 多级靶向纳米基因递送系统用于肿瘤相关巨噬细胞重编程研究, 负责人, 地方任务, 2023-01--2025-12
参与会议
(1)超声激活的靶向仿生纳米药物协同治疗逆转脑胶质瘤耐药   中国化学会第 32 届学术年会   2021-04-19
(2)Oxygen-Boosted Immunogenic Photodynamic Therapy Based on Gold Nanocages@MnO2 to Inhibit Tumor Growth and Metastases   第三届国际纳米药物大会   2018-10-15

指导学生

现指导学生

杨婷  硕士研究生  070300-化学  

方全  硕士研究生  071000-生物学  

任健  博士研究生  0703Z1-化学生物学