基本信息

王力 男 硕导 中国科学院精密测量科学与技术创新研究院
电子邮件: wangli@apm.ac.cn
通信地址: 武汉市武昌小洪山西30号中国科学院精密测量科学与技术创新研究院
邮政编码:
电子邮件: wangli@apm.ac.cn
通信地址: 武汉市武昌小洪山西30号中国科学院精密测量科学与技术创新研究院
邮政编码:
研究领域
1. 原子磁力计
2. 零场核磁共振
招生信息
欢迎对精密测量物理、原子分子物理、核磁共振、光学等感兴趣的同学和联合培养学生(华中科技大学国家光电研究中心)与我联系。
课题组网站:http://zhou.apm.ac.cn http://zhougroup.org
招生专业
070208-无线电物理070207-光学070203-原子与分子物理
招生方向
原子磁力计零场核磁共振
教育背景
2009-09--2014-06 中国科学技术大学 博士2005-09--2009-06 中国科学技术大学 学士
工作经历
工作简历
2020-01~现在, 中国科学院精密测量科学与技术创新研究院, 高级工程师2016-06~2019-12,中国科学院武汉物理与数学研究所, 助理研究员2014-07~2016-06,中国科学技术大学, 博士后
专利与奖励
专利成果
[1] 周欣, 郭骏, 孙献平, 王力, 叶朝辉. 一种温度梯度可调式的磁共振原子陀螺装置. CN: CN111707251A, 2020-09-25.[2] 周欣, 肖康达, 孙献平, 赵修超, 王力, 娄昕, 叶朝辉. 一种用于超灵敏原子磁力计的主动式磁补偿方法. CN: CN110568384B, 2020-08-18.[3] 周欣, 李桐, 赵修超, 王力, 孙献平, 叶朝辉. 一种提升原子极化均匀度的核磁共振陀螺仪装置. CN: CN109827559B, 2020-08-11.[4] 周欣, 肖康达, 王力, 孙献平, 赵修超, 叶朝辉. 一种无被动磁屏蔽原子磁力计装置及测磁方法. CN: CN109358302A, 2019-02-19.[5] 周欣, 赵修超, 孙献平, 王力, 韩叶清, 刘买利, 叶朝辉. 一种储存和转移超极化气体的装置. 中国: CN106732241A, 2017-05-31.
出版信息
发表论文
[1] Zhu, Maohua, Wang, Li, Guo, Jun, Zhao, Xiuchao, Sun, Xianping, Ye, Chaohui, Zhou, Xin. Improvement in the signal amplitude and bandwidth of an optical atomic magnetometer via alignment-to-orientation conversion. Optics Express[J]. 2021, 29(18): 28680-28691, https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-18-28680&id=458038.[2] Xiao, Kangda, Wang, Li, Guo, Jun, Zhu, Maohua, Zhao, Xiuchao, Sun, Xianping, Ye, Chaohui, Zhou, Xin. Quieting an environmental magnetic field without shielding. REVIEW OF SCIENTIFIC INSTRUMENTS[J]. 2020, 91(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000560796100001.[3] Wang, Xiaofei, Zhu, Maohua, Xiao, Kangda, Guo, Jun, Wang, Li. Static weak magnetic field measurements based on low-field nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE[J]. 2019, 307: http://ir.wipm.ac.cn/handle/112942/21483, http://www.irgrid.ac.cn/handle/1471x/6859298, http://ir.wipm.ac.cn/handle/112942/21484, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000488025100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.[4] Li Wang, Tao Tu, Bo Gong, Cheng Zhou, GuangCan Guo. Experimental realization of non-adiabatic universal quantum gates using geometric Landau-Zener-Stückelberg interferometry. Scientific Reports[J]. 2016, 6: 19048-, https://www.nature.com/articles/srep19048.[5] Gong, Bo, Wang, Li, Tu, Tao, Li, ChuanFeng, Guo, GuangCan. Robust universal gates for quantum-dot spin qubits using tunable adiabatic passages. PHYSICAL REVIEW A[J]. 2016, 94(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000383136800001.[6] Wang, Li, Tu, Tao, Gong, Bo, Guo, GuangCan. Decoherence-protected spin-photon quantum gates in a hybrid semiconductor-superconductor circuit. PHYSICAL REVIEW A[J]. 2015, 92(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000367373700010.[7] Wang, Li, Zhou, Cheng, Tu, Tao, Jiang, HongWen, Guo, GuoPing, Guo, GuangCan. Quantum simulation of the Kibble-Zurek mechanism using a semiconductor electron charge qubit. PHYSICAL REVIEW A[J]. 2014, 89(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000332334200003.[8] Wang, Li, Tu, Tao, Guo, PingGuo, Guo, GuangCan. Renormalization group method for kink dynamics in a perturbed sine-Gordon equation. MODERN PHYSICS LETTERS B[J]. 2014, 28(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000334607200002.[9] Wang, Li, Tu, Tao, Guo, GuoPing, Guo, GuangCan. INTRINSIC AND EXTRINSIC DECOHERENCE FOR CHARGE QUBIT DYNAMICS IN A DOUBLE QUANTUM DOT. MODERN PHYSICS LETTERS B[J]. 2014, 28(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000330644700008.[10] Wang, Li, Tu, Tao, Zhou, Cheng, Zhao, YongJie, Guo, GuangCan, Guo, GuoPing. WIDTH OF QUANTUM HALL TRANSITION REGION IN THE PRESENCE OF LANDAU LEVEL MIXING. MODERN PHYSICS LETTERS B[J]. 2013, 27(28): https://www.webofscience.com/wos/woscc/full-record/WOS:000326346500003.[11] Cao, Gang, Li, HaiOu, Tu, Tao, Wang, Li, Zhou, Cheng, Xiao, Ming, Guo, GuangCan, Jiang, HongWen, Guo, GuoPing. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stuckelberg interference. NATURE COMMUNICATIONS[J]. 2013, 4: https://www.webofscience.com/wos/woscc/full-record/WOS:000316614600071.[12] 周诚, 王力, 涂涛, 韩天一, 李海鸥, 郭国平. Charge States and Transition of Double Quantum Dot in the Few-Electron Regime. CHINESE PHYSICS LETTERS[J]. 2013, 30(5): 1-3, https://www.webofscience.com/wos/woscc/full-record/WOS:000319436700001.[13] Ma, Qiong, Tu, Tao, Wang, Li, Zhou, Chen, Lin, ZhiRong, Xiao, Ming, Guo, GuoPing. COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS. MODERN PHYSICS LETTERS B[J]. 2013, 27(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000316899700008.[14] Gang Cao, HaiOu Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao, GuangCan Guo, HongWen Jiang, GuoPing Guo. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference. Nature Communications. 2013, 4: 1401-, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562462/.[15] 曹刚, 王力, 涂涛, 李海鸥, 肖明, 郭国平. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit. CHINESE PHYSICS LETTERS[J]. 2012, 29(3): 29-32, https://www.webofscience.com/wos/woscc/full-record/WOS:000302149500008.[16] Ma, Qiong, Tu, Tao, Wang, Li, Li, HaiOu, Lin, ZhiRong, Xiao, Ming, Guo, GuoPing. SUBSTRATE MODULATED GRAPHENE QUANTUM DOTS. MODERN PHYSICS LETTERS B[J]. 2012, 26(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000308489800003.[17] 周诚, 涂涛, 王力, 李海鸥, 曹刚, 郭光灿, 郭国平. Transport through a Gate Tunable Graphene Double Quantum Dot. CHINESE PHYSICS LETTERS[J]. 2012, 29(11): 194-197, https://www.webofscience.com/wos/woscc/full-record/WOS:000312488900051.[18] Ma, Qiong, Tu, Tao, Lin, Zhi-Rong, Guo, Guang-Can, Guo, Guo-Ping. Coulomb blockade in graphene quantum dots. http://arxiv.org/abs/0911.2845.
科研活动
科研项目
( 1 ) 流动模式超极化氙-129自旋交换光泵系统研究, 主持, 国家级, 2018-01--2020-12( 2 ) 用于肺部磁共振成像的超极化氙-129 自旋交换光泵系统研究, 主持, 省级, 2018-01--2019-12( 3 ) 远程磁探测型的核磁共振仪新方案, 主持, 研究所(学校), 2020-11--2022-05( 4 ) 基于原子精密传感的生物磁测量系统, 主持, 部委级, 2022-01--2023-12