基本信息
张雯娜 女 中国科学院大连化学物理研究所
张雯娜,中国科学院大连化学物理研究所副研究员,主要致力于分子筛催化反应机理的理论模拟研究。发表相关研究成果40余篇, 其中代表性论文发表在National Science Review,ACS Catal., J Catal., ChemComm, J. Energy Chem, Sep. Purif. Technol.等期刊,同时撰写C1化学专著1部,受邀发表NSR综述, Chem评述。理论计算合作工作发表在Angew. Chem. Int. Ed., Nat. Commun., J. Phys. Chem. Lett. J. Am. Chem. Soc., Catal. Sci. Technol. CrystEngComm, ACS Nano,Small等。获得大连化学物理研究所“优秀青年博士人才”项目资助; 主持国家自然科学基金青年项目、承担国家重点研发计划(青年项目),主持辽宁省自然科学基金, 参与国家自然科学基金重大项目及中科院重点项目。
电子邮件: zhangwn@dicp.ac.cn
通信地址: 大连市沙河口区中山路457号
邮政编码:116023
研究领域
分子筛催化,催化反应机理,理论模拟
1. 分子筛催化C1物种转化反应机理的研究
2. 分子筛微环境及其催化复杂反应体系的研究
招生信息
081705-工业催化
招生专业
081705-工业催化
招生方向
分子筛催化,C1化学,理论计算
教育背景
2012-09--2019-06 中国科学院大连化学物理研究所 工学博士学位2008-09--2012-06 中国科学院大连化学物理研究所 学士学位
学历
博士研究生
学位
博士研究生
工作经历
工作简历
2020-01~现在, 中国科学院大连化学物理研究所, 副研究员2019-09~2020-01,中国科学院大连化学物理研究所, 助理研究员
专利与奖励
专利成果
( 1 ) 一种甲醇和共进料物种共进料备环戊二烯类化合物的方法, 发明专利, 2021, 第 2 作者, 专利号: CN113860987A( 2 ) 测定小孔笼结构SAPO分子筛酸性的方法, 发明专利, 2021, 第 1 作者, 专利号: CN111735838B
出版信息
发表论文
[1] 危长城, 张雯娜, 杨阔, 柏秀, 徐舒涛, 李金哲, 刘中民. CO_(2)作为化学品原料的高效利用途径:与烷烃耦合反应. 催化学报(英文). 2023, 47(4): 138-149, http://lib.cqvip.com/Qikan/Article/Detail?id=7109421135.[2] 危长城, 张雯娜, 杨阔, 柏秀, 徐舒涛. CO2作为化学品原料的高效利用途径:与烷烃耦合反应(英文). Chinese Journal of Catalysis. 2023, 138-149, https://kns.cnki.net/kcms2/article/abstract?v=M9N_p6ifsvOKPr46Ow2O64OQN2-aYoMaSLq1ksysQSXzOLLSN1SJ9MizuqVyu5XCzw-exoV4TMMn5oQOLTV8zwAx6T5dgbcywWyQnYciDFeUVMg8XMtH8qKduZbXoENB&uniplatform=NZKPT&language=gb.[3] Jingyun Qian, Wenna Zhang, Xue Yang, Kexin Yan, Meikun Shen, Hongyue Pan, Hongjun Zhu, Lei Wang. Tailoring zeolite ERI aperture for efficient separation of CO2 from gas mixtures. SEPARATION AND PURIFICATION TECHNOLOGY. 2023, 309: http://dx.doi.org/10.1016/j.seppur.2022.123078.[4] Yu, Qiang, Zhang, Wenna, Li, Junjie, Liu, Wen, Wang, Yanan, Chu, Weifeng, Zhang, Xinbao, Xu, Longya, Zhu, Xiangxue, Li, Xiujie. High-silica FAU zeolite through controllable framework modulation for VOCs adsorption under high humidity. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2023, 355: http://dx.doi.org/10.1016/j.micromeso.2023.112570.[5] Zhang Wenna, Lin, Shanfan, Wei,Yingxu, Tian, Peng, Liu, Zhongmin. Cavity-controlled methanol conversion over zeolite catalysts. National Science Review[J]. 2023, 10: 1-20, https://doi.org/10.1093/nsr/nwad120.[6] 朱大丽, 王林英, 张雯娜, 李金哲, 崔文浩, 黄声骏, 田鹏. Realizing Fast Synthesis of High-Silica Zeolite Y with Remarkable Catalytic Performance.. Angewandte Chemie International Edition[J]. 2022, 61: [7] 刘荣升, 樊本汉, 张雯娜, 王林英, 亓良, 王莹利, 徐舒涛, 于政锡, 魏迎旭, 刘中民. Increasing the Number of Aluminum Atoms in T3 Sites of a Mordenite Zeolite by Low-Pressure SiCl4 Treatment to Catalyze Dimethyl Ether Carbonylation. Angewandte Chemie International Edition[J]. 2022, 134(18): https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202116990.[8] zeng shu, Zhang, Wenna, Li junjie, Lin, Shanfan, Xu, Shutao, wei yingxu, Liu, Zhongmin. Revealing the Roles of Hydrocarbon Pool Mechanism in Ethanol-to-Hydrocarbons Reaction. Journal of Catalysis[J]. 2022, [9] 樊本汉, Zhang, Wenna, Gao, Pan, Hou, Guangjin, Liu, Rongsheng, 徐舒涛, Wei,Yingxu, Liu, Zhongmin. Quantitatively Mapping the Intrinsic Acid Sites Distribution in Mordenite Zeolite by High-Field 23Na Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters[J]. 2022, 13(23): 5186-5194, [10] Zang, Kailu, Ding, Junxia, Zhang, Wenna, Huang, Jindou, Yan, Juanzhi. Electronic structure of chabazite zeolites H-SSZ-13 and H-SAPO-34. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2022, 338: http://dx.doi.org/10.1016/j.micromeso.2022.111957.[11] 陈南, 张瑾, 顾雅婷, 张雯娜, 曹凯鹏, 崔文浩, 徐舒涛, 樊栋, 田鹏, 刘中民. Designed synthesis of MOR zeolites using gemini-type bis(methylpyrrolidinium) dications as structure directing agents and their DME carbonylation performance. Journal of Materials Chemistry A[J]. 2022, 10(15): 8334-8343, https://pubs.rsc.org/en/content/articlelanding/2022/TA/D2TA00451H.[12] Zhang, Wenna, Wei, Yingxu. Regulation of product distribution in CO2 hydrogenation to light olefins. CHEM[J]. 2022, 8(5): 1170-1173, http://dx.doi.org/10.1016/j.chempr.2022.04.024.[13] Tong, Yansi, Yuan, Danhua, Zhang, Wenna, Wei, Yingxu, Liu, Zhongmin, Xu, Yunpeng. Selective exchange of alkali metal ions on EAB zeolite. JOURNAL OF ENERGY CHEMISTRY[J]. 2021, 58(7): 41-47, http://dx.doi.org/10.1016/j.jechem.2020.09.029.[14] Sun, Lijing, Zhang, Wenna, Li, Zhuocheng, Yang, Miao, Wang, Ye, Zhang, Xiaosi, Tian, Peng, Liu, Zhongmin. Dual-template directed aminothermal syntheses and characterization of silicoaluminophosphates SAPO-CLO and ECR-40. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2021, 315: http://dx.doi.org/10.1016/j.micromeso.2021.110915.[15] Lin, Shanfan, Zhi, Yuchun, Chen, Wei, Li, Huan, Zhang, Wenna, Lou, Caiyi, Wu, Xinqiang, Zeng, Shu, Xu, Shutao, Xiao, Jianping, Zheng, Anmin, Wei, Yingxu, Liu, Zhongmin. Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2021, 143(31): 12038-12052, http://dx.doi.org/10.1021/jacs.1c03475.[16] Lou, Caiyi, Zhang, Wenna, Ma, Chao, Fan, Benhan, Xu, Shutao, Gao, Shushu, Guo, Peng, Wei, Yingxu, Liu, Zhongmin. Revealing the Specific Spatial Confinement in 8-membered Ring Cage-type Molecular Sieves via Solid-state NMR and Theoretical Calculations. CHEMCATCHEM[J]. 2021, 13(5): 1299-1305, http://dx.doi.org/10.1002/cctc.202001682.[17] Tan, Yuan, Yan, Lei, Huang, Chuanqi, Zhang, Wenna, Qi, Haifeng, Kang, Leilei, Pan, Xiaoli, Zhong, Yijun, Hu, Yong, Ding, Yunjie. Fabrication of an Au-25-Cys-Mo Electrocatalyst for Efficient Nitrogen Reduction to Ammonia under Ambient Conditions. SMALL[J]. 2021, 17(21): http://dx.doi.org/10.1002/smll.202100372.[18] Han, Jingfeng, Liu, Zhiqiang, Li, Hua, Zhong, Jiawei, Zhang, Wenna, Huang, Jindou, Zheng, Anmin, Wei, Yingxu, Liu, Zhongmin. Simultaneous Evaluation of Reaction and Diffusion over Molecular Sieves for Shape-Selective Catalysis. ACS CATALYSIS[J]. 2020, 10(15): 8727-8735, http://dx.doi.org/10.1021/acscatal.0c02054.[19] Zhang, Wenna, Zhang, Mozhi, Xu, Shutao, Gao, Shushu, Wei, Yingxu, Liu, Zhongmin. Methylcyclopentenyl Cations Linking Initial Stage and Highly Efficient Stage in Methanol-to-Hydrocarbon Process. ACS CATALYSIS[J]. 2020, 10(8): 4510-4516, https://www.webofscience.com/wos/woscc/full-record/WOS:000543700400005.[20] Zeng, Shu, Xu, Shutao, Gao, Shushu, Gao, Mingbin, Zhang, Wenna, Wei, Yingxu, Liu, Zhongmin. Differentiating Diffusivity in Different Channels of ZSM-5 Zeolite by Pulsed Field Gradient (PFG) NMR. CHEMCATCHEM[J]. 2020, 12(2): 463-468, https://www.webofscience.com/wos/woscc/full-record/WOS:000500588300001.[21] Yu, Bowen, Zhang, Wenna, Wei, Yingxu, Wu, Xinqiang, Sun, Tantan, Fan, Benhan, Xu, Shutao, Liu, Zhongmin. Capture and identification of coke precursors to elucidate the deactivation route of the methanol-to-olefin process over H-SAPO-34. CHEMICAL COMMUNICATIONS[J]. 2020, 56(58): 8063-8066, https://www.webofscience.com/wos/woscc/full-record/WOS:000550563800010.[22] Zhang, Wenna, Xu, Shutao, Zhi, Yuchun, Wei, Yingxu, Liu, Zhongmin. Methylcyclopentenyl cation mediated reaction route in methanol-to-olefins reaction over H-RUB-50 with small cavity. JOURNAL OF ENERGY CHEMISTRY[J]. 2020, 45(6): 25-30, http://lib.cqvip.com/Qikan/Article/Detail?id=7101596506.[23] Zang, Kailu, Zhang, Wenna, Huang, Jindou, Feng, Pei. Chabazite Architecture Dominates the Structure of SAPO-34's Surface Methoxy Species. CATALYSIS LETTERS[J]. 2019, 149(8): 2104-2109, https://www.webofscience.com/wos/woscc/full-record/WOS:000470669800007.[24] Zhang, Wenna, Zhi, Yuchun, Huang, Jindou, Wu, Xinqiang, Zeng, Shu, Xu, Shutao, Zheng, Anmin, Wei, Yingxu, Liu, Zhongmin. Methanol to Olefins Reaction Route Based on Methylcyclopentadienes as Critical Intermediates. ACS CATALYSIS[J]. 2019, 9(8): 7373-7379, https://www.webofscience.com/wos/woscc/full-record/WOS:000480503700080.[25] Wu, Pengfei, Yang, Miao, Zhang, Wenna, Zeng, Shu, Gao, Mingbin, Xu, Shutao, Tian, Peng, Liu, Zhongmin. Silicoaluminophosphate molecular sieve DNL-6: Synthesis with a novel template, N,N'-dimethylethylenediamine, and its catalytic application. CHINESE JOURNAL OF CATALYSIS[J]. 2018, 39(9): 1511-1519, http://dx.doi.org/10.1016/S1872-2067(18)63122-5.[26] Wu, Xinqiang, Xu, Shutao, Wei, Yingxu, Zhang, Wenna, Huang, Jindou, Xu, Shuliang, He, Yanli, Lin, Shanfan, Sun, Tantan, Liu, Zhongmin. Evolution of C-C Bond Formation in the Methanol-to-Olefins Process: From Direct Coupling to Autocatalysis. ACS CATALYSIS[J]. 2018, 8(8): 7356-7361, https://www.webofscience.com/wos/woscc/full-record/WOS:000441112400056.[27] Yan, Nana, Xu, Hongyi, Zhang, Wenna, Sun, Tantan, Guo, Peng, Tian, Peng, Liu, Zhongmin. Probing locations of organic structure-directing agents (OSDAs) and host-guest interactions in CHA-type SAPO-34/44. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2018, 264: 55-59, http://cas-ir.dicp.ac.cn/handle/321008/167192.[28] Zhang, Wenna, Chen, Jingrun, Xu, Shutao, Chu, Yueying, Wei, Yingxu, Zhi, Yuchun, Huang, Jindou, Zheng, Anmin, Wu, Xinqiang, Meng, Xiangju, Xiao, Fengshou, Deng, Feng, Liu, Zhongmin. Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS CATALYSIS[J]. 2018, 8(12): 10950-10963, http://www.corc.org.cn/handle/1471x/2372921.[29] Wu Pengfei, Yang Miao, Zhang Wenna, Zeng Shu, Gao Mingbin, Xu Shutao, Tian Peng, Liu Zhongmin. 以N,N’-二甲基乙二胺为模板剂合成磷酸硅铝分子筛DNL-6及其在催化中的应用. 催化学报[J]. 2018, 39(9): 1511-1519, http://lib.cqvip.com/Qikan/Article/Detail?id=675982241.[30] 吴鹏飞, 杨淼, 张雯娜, 曾姝, 高铭滨, 徐舒涛, 田鹏, 刘中民. 以N,N’-二甲基乙二胺为模板剂合成磷酸硅铝分子筛DNL-6及其在催化中的应用. 催化学报[J]. 2018, 39(9): 1511-1519, http://lib.cqvip.com/Qikan/Article/Detail?id=675982241.[31] Ni, Youming, Shi, Lei, Liu, Hongchao, Zhang, Wenna, Liu, Yong, Zhu, Wenliang, Liu, Zhongmin. A green route for methanol carbonylation. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2017, 7(20): 4818-4822, http://cas-ir.dicp.ac.cn/handle/321008/169220.[32] Wu, Pengfei, Yang, Miao, Zhang, Wenna, Xu, Shutao, Guo, Peng, Tian, Peng, Liu, Zhongmin. Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive three-in-one non-surfactant organosilane. CHEMICAL COMMUNICATIONS[J]. 2017, 53(36): 4985-4988, https://www.webofscience.com/wos/woscc/full-record/WOS:000400579100024.[33] Xu, Shutao, Zhi, Yuchun, Han, Jingfeng, Zhang, Wenna, Wu, Xinqiang, Sun, Tantan, Wei, Yingxu, Liu, Zhongmin, Song, C. Advances in Catalysis for Methanol-to-Olefins Conversion. ADVANCES IN CATALYSIS, VOL 61. 2017, 61: 37-122, https://www.webofscience.com/wos/woscc/full-record/WOS:000432515600003.[34] 赵学斌, 王林英, 李金哲, 徐舒涛, 张雯娜, 魏迎旭, 郭新闻, 田鹏, 刘中民. Investigation of methanol conversion over high-Si beta zeolites and the reaction mechanism of their high propene selectivity. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2017, 7(4): 5882-5892, http://cas-ir.dicp.ac.cn/handle/321008/168418.[35] Wu, Xinqiang, Xu, Shutao, Zhang, Wenna, Huang, Jindou, Li, Jinzhe, Yu, Bowen, Wei, Yingxu, Liu, Zhongmin. Direct Mechanism of the First Carbon-Carbon Bond Formation in the Methanol-to-Hydrocarbons Process. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2017, 56(31): 9039-9043, https://www.webofscience.com/wos/woscc/full-record/WOS:000424260200016.[36] Zhang, Mozhi, Xu, Shutao, Li, Jinzhe, Wei, Yingxu, Gong, Yanjun, Chu, Yueying, Zheng, Anmin, Wang, Jinbang, Zhang, Wenna, Wu, Xinqiang, Deng, Feng, Liu, Zhongmin. Methanol to hydrocarbons reaction over H beta zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism. JOURNAL OF CATALYSIS[J]. 2016, 335: 47-57, http://ir.wipm.ac.cn/handle/112942/9198.[37] Zhang, Mozhi, Xu, Shutao, Wei, Yingxu, Li, Jinzhe, Chen, Jingrun, Wang, Jinbang, Zhang, Wenna, Gao, Shushu, Li, Xiujie, Wang, Congxin, Liu, Zhongmin. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC ADVANCES[J]. 2016, 6(98): 95855-95864, http://cas-ir.dicp.ac.cn/handle/321008/169834.[38] Wang, Jinbang, Wei, Yingxu, Li, Jinzhe, Xu, Shutao, Zhang, Wenna, He, Yanli, Chen, Jingrun, Zhang, Mozhi, Zheng, Anmin, Deng, Feng, Guo, Xinwen, Liu, Zhongmin. Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2016, 6(1): 89-97, http://ir.wipm.ac.cn/handle/112942/9104.[39] Wang, Dehua, Yang, Miao, Zhang, Wenna, Fan, Dong, Tian, Peng, Liu, Zhongmin. Hollow nanocrystals of silicoaluminophosphate molecular sieves synthesized by an aminothermal co-templating strategy. CRYSTENGCOMM[J]. 2016, 18(6): 1000-1008, http://cas-ir.dicp.ac.cn/handle/321008/171372.[40] Zhang, Wenna, Chu, Yueying, Wei, Yingxu, Yi, Xianfeng, Xu, Shutao, Huang, Jindou, Zhang, Mozhi, Zheng, Anmin, Deng, Feng, Liu, Zhongmin. Influences of the confinement effect and acid strength of zeolite on the mechanisms of Methanol-to-Olefins conversion over H-ZSM-5: A theoretical study of alkenes-based cycle. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2016, 231: 216-229, http://dx.doi.org/10.1016/j.micromeso.2016.05.029.[41] Zhang, Mozhi, Xu, Shutao, Wei, Yingxu, Li, Jinzhe, Wang, Jinbang, Zhang, Wenna, Gao, Shushu, Liu, Zhongmin. Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times. CHINESE JOURNAL OF CATALYSIS[J]. 2016, 37(8): 1413-1422, http://cas-ir.dicp.ac.cn/handle/321008/170076.[42] 张默之, 徐舒涛, 魏迎旭, 李金哲, 王金棒, 张雯娜, 高树树, 刘中民. 调变 MTO反应中双循环机理的比重:ZSM-5分子筛上不同接触时间的作用. 催化学报[J]. 2016, 37(8): 1413-1422, http://lib.cqvip.com/Qikan/Article/Detail?id=669561075.[43] Wang, Chan, Yang, Miao, Zhang, Wenna, Su, Xiong, Xu, Shutao, Tian, Peng, Liu, Zhongmin. Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance. RSC ADVANCES[J]. 2016, 6(53): 47864-47872, http://cas-ir.dicp.ac.cn/handle/321008/170618.[44] 王金棒, 李金哲, 徐舒涛, 郅玉春, 魏迎旭, 何艳丽, 陈景润, 张默之, 王全义, 张雯娜, 武新强, 郭新闻, 刘中民. HZSM-22和SAPO-11催化甲醇转化制烯烃(MTH)反应:酸强度对反应和失活机理的影响. 催化学报[J]. 2015, 36(8): 1392-1402, http://lib.cqvip.com/Qikan/Article/Detail?id=665710049.[45] Wang Jinbang, Li Jinzhe, Xu Shutao, Zhi Yuchun, Wei Yingxu, He Yanli, Chen Jingrun, Zhang Mozhi, Wang Quanyi, Zhang Wenna, Wu Xinqiang, Guo Xinwen, Liu Zhongmin. HZSM-22和SAPO-11催化甲醇转化制烯烃(MTH)反应:酸强度对反应和失活机理的影响. 催化学报[J]. 2015, 36(8): 1392-1402, http://lib.cqvip.com/Qikan/Article/Detail?id=665710049.[46] Wang, Jinbang, Li, Jinzhe, Xu, Shutao, Zhi, Yuchun, Wei, Yingxu, He, Yanli, Chen, Jingrun, Zhang, Mozhi, Wang, Quanyi, Zhang, Wenna, Wu, Xinqiang, Guo, Xinwen, Liu, Zhongmin. Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: Effect of catalyst acid strength on reaction and deactivation mechanism. CHINESE JOURNAL OF CATALYSIS[J]. 2015, 36(8): 1392-1402, http://dx.doi.org/10.1016/S1872-2067(15)60953-6.[47] 王金棒, 李金哲, 徐舒涛, 郅玉春, 魏迎旭, 何艳丽, 陈景润, 张默之, 王全义, 张雯娜, 武新强, Xinwen Guo, 刘中民. Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: Effect of catalyst acid strengthon reaction and deactivation mechanism. CHINESE JOURNAL OF CATALYSIS催化学报[J]. 2015, 36: 1392, http://cas-ir.dicp.ac.cn/handle/321008/148156.
发表著作
(1) Synthesis of Olefins from CH3OH, Wiely-VCH, 2022-01, 第 1 作者
科研活动
科研项目
( 1 ) 分子筛催化甲醇转化反应中间体随反应历程动态演变的实验和理论计算研究, 负责人, 国家任务, 2021-01--2023-12( 2 ) 分子筛催化的原位动态表征及反应机理研究, 负责人, 国家任务, 2022-01--2026-12( 3 ) 分子筛催化甲醇制烯烃反应网络的建立及调控, 负责人, 地方任务, 2022-09--2024-08( 4 ) 大连化学物理研究所优秀青年博士人才资助, 负责人, 研究所自选, 2020-01--2030-01( 5 ) 甲醇转化的反应机理研究, 参与, 国家任务, 2020-01--2024-12( 6 ) 煤代油战略下煤制烯烃和乙醇的关键催化机制, 参与, 中国科学院计划, 2019-01--2021-12
参与会议
(1)甲醇制烯烃反应中活性中间体-环戊二烯物种的理论研究 第十四届全国 量子化学会议 2021-10-09(2) 分子筛催化 MTO 反应新反应途径的建立 中国化学会第 21 届全国分子 筛学术大会 2021-09-27(3)H-RUB-50 分子筛催化 MTO 反应机理及笼控制 择形研究 第十九届全国催化学术会议 2019-10-13