General

Professor, Deputy Director, Center for BIT

Shenzhen Institutes of Advanced Technology, CAS, China

Email: sq.wang@siat.ac.cn

Shuqiang Wang is currently a Professor with Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science. He has pulished over 150 SCI/EI-indexed papers on journals and conferences, such as IEEE TMI/TIP/TNNLS/TCYB/TSMC/TSP/TASE/TNSRE, Medical Image Analysis, ICLR, IJCAI, AAAI, MICCAI, etc., and more than 50 patents; He served as Associate Editors for Frontiers in Neuroscience, Brain Informatics, Big Data and Cloud Innovation; Senior Member of IEEE and CCF.  He is included in the  Stanford's List of World's Top 2% Scientists.

Google Scholar Profile      Scopus Scholar Profile




 




Research Areas

​Machine learning, Smart Healthcare, Brain informatics,  Human-Machine Interaction, Big data

Publications

   
Selected Publications Since 2017

  • Prior-guided Adversarial Learning with Hypergraph for Predicting Abnormal Connections in Alzheimer's Disease, IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2023.3344641, 2024 (IF:11.8)
  • Alzheimer's Disease Diagnosis From Multi-modal Data via Feature Inductive Learning and Dual Multilevel Graph Neural Network, Medical Image Analysis, 97:103213,  2024

  • DecGAN: Decoupling Generative Adversarial Network for Detecting Abnormal Neural Circuits in Alzheimer's Disease, IEEE Transactions on Artificial Intelligence, DOI: 10.1109/TAI.2024.3416420, 2024

  • Estimating Addiction-Related Brain Connectivity by Prior-Embedding Graph Generative Adversarial Networks, IEEE Transactions on Cybernetics, DOI:: 10.1109/TCYB.2024.3353549, 2024

  • 3D Brain Reconstruction by Hierarchical Shape-Perception Network from a Single Incomplete Image, IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2023.3266819, 2023 (IF=14.2)
  • Federated Domain Adaptation via Transformer for Multi-site Alzheimer’s Disease Diagnosis, IEEE Transactions on Medical Imaging, DOI: 10.1109/TMI.2023.3300725, 2023  (IF=11)
  • Devignet: High-Resolution Vignetting Removal via a Dual Aggregated Fusion Transformer With Adaptive Channel Expansion, AAAI 2024
  • WaveNet: Tackling Non-Stationary Graph Signals via Graph Spectral Wavelets, AAAI 2024
  • Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain, IEEE Transactions on Neural Networks and Learning Systems, 34(11):8802-8814, 2023  (IF=14.2)
  • Alzheimer’s Disease Prediction via Brain Structural-Functional Deep Fusing Network, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31:4601-4612, DOI: 10.1109/TNSRE.2023.3333952, 2023
  • Brain Structure-Function Fusing Representation Learning using Adversarial Decomposed-VAE for Analyzing MCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering, DOI: 10.1109/TNSRE.2023.3323432, 2023
  • Large-Scale Film Style Dataset for Learning Multi-frequency Driven Film Enhancement, IJCAI 2023
  • Fundus Image-label Pairs Synthesis and Retinopathy Screening via GANs with Class-imbalanced Semi-supervised Learning,  IEEE Transactions on Medical Imaging, DOI:10.1109/TMI.2023.3263216, 2023 (IF=11)
  • Morphological feature visualization of Alzheimer's disease via Multidirectional Perception GAN, IEEE Transactions on Neural Networks and Learning Systems,  DOI: 10.1109/TNNLS.2021.3118369, 34(8):4401-4415, 2023,  (IF=14.2 )
  • Joint 3D trajectory and resource optimization in multi-UAV enabled IoT networks with wireless power transfer, IEEE Internet of Things Journal, 8(10):7833-7848, 2021  (IF=10.2)
  • Effective Distributed Learning with Random Features: Improved Bounds and Algorithms, ICLR, 2021 
  • Tensorizing GAN with High-Order Pooling for Alzheimer’s Disease Assessment, IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2021.3063516, 33(9): 4945-4959, 2022 (IF=14.2)
  • Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis, IEEE Transactions on Medical Imaging, DOI: 10.1109/TMI.2021.3107013,  41(1): 145-157, 2022,  (IF=11)
  • Predicting Clinical Scores for Alzheimer's Disease Based on Joint and Deep Learning, Expert Systems with Applications, 187:115966, 2022(IF=6.9 )
  • Insights Into Algorithms for Separable Nonlinear Least Squares Problems, IEEE Transactions on Image Processing, 30: 1207-1218, 2021(IF=10.3)
  • Diabetic Retinopathy Diagnosis using Multi-channel Generative Adversarial Network with Semi-supervision, IEEE Transactions on Automation Science and Engineering, 18(2):574-585, 2021, (IF=5.2)
  • An Ensemble based Densely-Connected Deep Learning System for Assessment of Skeletal Maturity, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2022, 52(1):426-437, (IF=13.4)
  • Skin Lesion Segmentation via Generative Adversarial Networks with Dual Discriminators, Medical Image Analysis, 64: 10716, 2020 (IF=11.1)
  • Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network, MICCAI 2020, LNCS 12262:698-707, 2020
  • Multi-Scale Enhanced Graph Convolutional Network for Early Mild Cognitive Impairment Detection, MICCAI 2020, LNCS 12267: 228–237, 2020.
  • Deep and joint learning of longitudinal data for Alzheimer’s disease prediction, Pattern Recognition, 10: 107247, 2020(IF=7.2)
  • Dominant-modes-based Sliding Mode Observer for Estimation of Temperature Distribution in Rapid Thermal Processing System, IEEE Transactions on Industrial Informatics, 15(5): 2673-2681,  2019 (IF:9.1 )
  • Classification oF Diffusion tensor metrics for The Diagnosis of A Myelopathic Cord Using Machine Learning, International Journal of Neural Systems,6, 1750036, 2018 (IF=6.4)
  • Subcarrier Pairing Based Resource Optimization for OFDM Wireless Powered Relay Transmissions with Time Switching Scheme, IEEE Transactions on Signal Processing, 65(5): 1130-1145, 2017. (IF:5.2 Q1)

Students

现指导学生

陈卓  硕士研究生  085211-计算机技术  

胡圣烨  硕士研究生  085210-控制工程  

罗蔚然  硕士研究生  085208-电子与通信工程  

奚桂锴  硕士研究生  085211-计算机技术  

游森榕  硕士研究生  085211-计算机技术  

胡博闻  硕士研究生  085211-计算机技术  

杨戈  硕士研究生  085211-计算机技术  

宫长威  硕士研究生  081200-计算机科学与技术  

荆常宏  硕士研究生  085400-电子信息  

王中昊  硕士研究生  085400-电子信息